These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34738268)

  • 1. Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability.
    Dimond ZE; Suchland RJ; Baid S; LaBrie SD; Soules KR; Stanley J; Carrell S; Kwong F; Wang Y; Rockey DD; Hybiske K; Hefty PS
    Mol Microbiol; 2021 Dec; 116(6):1433-1448. PubMed ID: 34738268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational Analysis of the Chlamydia muridarum Plasticity Zone.
    Rajaram K; Giebel AM; Toh E; Hu S; Newman JH; Morrison SG; Kari L; Morrison RP; Nelson DE
    Infect Immun; 2015 Jul; 83(7):2870-81. PubMed ID: 25939505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle.
    Cortina ME; Derré I
    mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.
    O'Connell CM; AbdelRahman YM; Green E; Darville HK; Saira K; Smith B; Darville T; Scurlock AM; Meyer CR; Belland RJ
    Infect Immun; 2011 Mar; 79(3):1044-56. PubMed ID: 21199910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid-mediated transformation tropism of chlamydial biovars.
    Song L; Carlson JH; Zhou B; Virtaneva K; Whitmire WM; Sturdevant GL; Porcella SF; McClarty G; Caldwell HD
    Pathog Dis; 2014 Mar; 70(2):189-93. PubMed ID: 24214488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive genome analysis and comparisons of the swine pathogen, Chlamydia suis reveals unique ORFs and candidate host-specificity factors.
    Dimond ZE; Hefty PS
    Pathog Dis; 2021 Mar; 79(2):. PubMed ID: 32639528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum.
    Fields KA; Bodero MD; Scanlon KR; Jewett TJ; Wolf K
    Infect Immun; 2022 Dec; 90(12):e0045322. PubMed ID: 36350146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Transposon Mutagenesis for Chlamydia muridarum.
    Wang Y; LaBrie SD; Carrell SJ; Suchland RJ; Dimond ZE; Kwong F; Rockey DD; Hefty PS; Hybiske K
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in growth characteristics and elementary body associated cytotoxicity between Chlamydia trachomatis oculogenital serovars D and H and Chlamydia muridarum.
    Lyons JM; Ito JI; Peña AS; Morré SA
    J Clin Pathol; 2005 Apr; 58(4):397-401. PubMed ID: 15790704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture.
    Giebel AM; Hu S; Rajaram K; Finethy R; Toh E; Brothwell JA; Morrison SG; Suchland RJ; Stein BD; Coers J; Morrison RP; Nelson DE
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967464
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Onorini D; Leonard CA; Phillips Campbell R; Prähauser B; Pesch T; Schoborg RV; Jerse AE; Tarigan B; Borel N
    Microbiol Spectr; 2023 Jun; 11(3):e0450022. PubMed ID: 37039695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-10 Producing B Cells Dampen Protective T Cell Response and Allow
    Sanchez LR; Godoy GJ; Gorosito Serrán M; Breser ML; Fiocca Vernengo F; Engel P; Motrich RD; Gruppi A; Rivero VE
    Front Immunol; 2019; 10():356. PubMed ID: 30881362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydial Plasmid-Dependent Pathogenicity.
    Zhong G
    Trends Microbiol; 2017 Feb; 25(2):141-152. PubMed ID: 27712952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irgm proteins attenuate inflammatory disease in mouse models of genital
    Dockterman J; Reitano JR; Everitt JI; Wallace GD; Hendrix M; Taylor GA; Coers J
    mBio; 2024 Apr; 15(4):e0030324. PubMed ID: 38501887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia muridarum Colonization in the Gastrointestinal Tract.
    Shao L; Zhang T; Melero J; Huang Y; Liu Y; Liu Q; He C; Nelson DE; Zhong G
    Infect Immun; 2018 Jan; 86(1):. PubMed ID: 29038127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.
    Wang Y; Cutcliffe LT; Skilton RJ; Ramsey KH; Thomson NR; Clarke IN
    Pathog Dis; 2014 Oct; 72(1):19-23. PubMed ID: 24700815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum.
    Lei L; Chen J; Hou S; Ding Y; Yang Z; Zeng H; Baseman J; Zhong G
    Infect Immun; 2014 Mar; 82(3):983-92. PubMed ID: 24343644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages.
    Finethy R; Jorgensen I; Haldar AK; de Zoete MR; Strowig T; Flavell RA; Yamamoto M; Nagarajan UM; Miao EA; Coers J
    Infect Immun; 2015 Dec; 83(12):4740-9. PubMed ID: 26416908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.