These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 34738335)

  • 1. Complement and microglia dependent synapse elimination in brain development.
    Soteros BM; Sia GM
    WIREs Mech Dis; 2022 May; 14(3):e1545. PubMed ID: 34738335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complement system: an unexpected role in synaptic pruning during development and disease.
    Stephan AH; Barres BA; Stevens B
    Annu Rev Neurosci; 2012; 35():369-89. PubMed ID: 22715882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement System in Neural Synapse Elimination in Development and Disease.
    Presumey J; Bialas AR; Carroll MC
    Adv Immunol; 2017; 135():53-79. PubMed ID: 28826529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSMD1 regulates brain complement activity and circuit development.
    Baum ML; Wilton DK; Fox RG; Carey A; Hsu YH; Hu R; Jäntti HJ; Fahey JB; Muthukumar AK; Salla N; Crotty W; Scott-Hewitt N; Bien E; Sabatini DA; Lanser TB; Frouin A; Gergits F; Håvik B; Gialeli C; Nacu E; Lage K; Blom AM; Eggan K; McCarroll SA; Johnson MB; Stevens B
    Brain Behav Immun; 2024 Jul; 119():317-332. PubMed ID: 38552925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Roles of Complement in Psychiatric Disorders.
    Druart M; Le Magueresse C
    Front Psychiatry; 2019; 10():573. PubMed ID: 31496960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease.
    Sokolova D; Childs T; Hong S
    Fac Rev; 2021; 10():19. PubMed ID: 33718936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia.
    Scott-Hewitt N; Perrucci F; Morini R; Erreni M; Mahoney M; Witkowska A; Carey A; Faggiani E; Schuetz LT; Mason S; Tamborini M; Bizzotto M; Passoni L; Filipello F; Jahn R; Stevens B; Matteoli M
    EMBO J; 2020 Aug; 39(16):e105380. PubMed ID: 32657463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning.
    Györffy BA; Kun J; Török G; Bulyáki É; Borhegyi Z; Gulyássy P; Kis V; Szocsics P; Micsonai A; Matkó J; Drahos L; Juhász G; Kékesi KA; Kardos J
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6303-6308. PubMed ID: 29844190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).
    Sasaki T; Oga T; Nakagaki K; Sakai K; Sumida K; Hoshino K; Miyawaki I; Saito K; Suto F; Ichinohe N
    Biochem Biophys Res Commun; 2014 Feb; 444(3):302-6. PubMed ID: 24485715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice.
    Kovács RÁ; Vadászi H; Bulyáki É; Török G; Tóth V; Mátyás D; Kun J; Hunyadi-Gulyás É; Fedor FZ; Csincsi Á; Medzihradszky K; Homolya L; Juhász G; Kékesi KA; Józsi M; Györffy BA; Kardos J
    Front Immunol; 2020; 11():599771. PubMed ID: 33628204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development.
    Cong Q; Soteros BM; Wollet M; Kim JH; Sia GM
    Nat Neurosci; 2020 Sep; 23(9):1067-1078. PubMed ID: 32661396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3.
    Hao W; Ma Q; Wang L; Yuan N; Gan H; He L; Li X; Huang J; Chen J
    Microbiome; 2024 Feb; 12(1):34. PubMed ID: 38378622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS.
    Shen FS; Liu C; Sun HZ; Chen XY; Xue Y; Chen L
    J Leukoc Biol; 2024 May; ():. PubMed ID: 38700080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia.
    Bahrini I; Song JH; Diez D; Hanayama R
    Sci Rep; 2015 Jan; 5():7989. PubMed ID: 25612542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C1q and SRPX2 regulate microglia mediated synapse elimination during early development in the visual thalamus but not the visual cortex.
    Cong Q; Soteros BM; Huo A; Li Y; Tenner AJ; Sia GM
    Glia; 2022 Mar; 70(3):451-465. PubMed ID: 34762332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation.
    Irfan M; Evonuk KS; DeSilva TM
    FEBS J; 2022 Apr; 289(8):2110-2127. PubMed ID: 34496137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning.
    Sellgren CM; Gracias J; Watmuff B; Biag JD; Thanos JM; Whittredge PB; Fu T; Worringer K; Brown HE; Wang J; Kaykas A; Karmacharya R; Goold CP; Sheridan SD; Perlis RH
    Nat Neurosci; 2019 Mar; 22(3):374-385. PubMed ID: 30718903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microglia-mediated synaptic elimination in neuronal development and disease.
    Whitelaw BS
    J Neurophysiol; 2018 Jan; 119(1):1-4. PubMed ID: 28835520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microglia regulate synaptic development and plasticity.
    Andoh M; Koyama R
    Dev Neurobiol; 2021 Jul; 81(5):568-590. PubMed ID: 33583110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic elimination by microglia and disturbed higher brain functions.
    Miyanishi K; Sato A; Kihara N; Utsunomiya R; Tanaka J
    Neurochem Int; 2021 Jan; 142():104901. PubMed ID: 33181238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.