BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34738507)

  • 1. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing.
    Sheng L; Li M; Zheng S; Qi J
    J Biomater Appl; 2022 Feb; 36(7):1173-1187. PubMed ID: 34738507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
    Zhang X; Yan Z; Guan G; Lu Z; Yan S; Du A; Wang L; Li Q
    J Biomater Appl; 2022 Jan; 36(6):1019-1032. PubMed ID: 34605703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate.
    Shen Z; Cao Y; Li M; Yan Y; Cheng R; Zhao Y; Shao Q; Wang J; Sang S
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112360. PubMed ID: 34579879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P
    ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration.
    Gao J; Li M; Cheng J; Liu X; Liu Z; Liu J; Tang P
    J Funct Biomater; 2023 Feb; 14(2):. PubMed ID: 36826895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration.
    He B; Wang J; Xie M; Xu M; Zhang Y; Hao H; Xing X; Lu W; Han Q; Liu W
    Bioact Mater; 2022 Nov; 17():234-247. PubMed ID: 35386466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of chitooligosaccharide-polyethylene glycol diacrylate hydrogel inks for bone tissue regeneration.
    Rajabi M; Cabral JD; Saunderson S; Ali MA
    J Biomed Mater Res A; 2023 Sep; 111(9):1468-1481. PubMed ID: 37066870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel.
    Fazal F; Melchels FPW; McCormack A; Silva AF; Callanan A; Koutsos V; Radacsi N
    J Mech Behav Biomed Mater; 2023 Mar; 139():105665. PubMed ID: 36640542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GelMA-PEGDA-nHA Composite Hydrogel for Bone Tissue Engineering.
    Wang Y; Cao X; Ma M; Lu W; Zhang B; Guo Y
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair.
    Jia W; Liu Z; Sun L; Cao Y; Shen Z; Li M; An Y; Zhang H; Sang S
    Biotechnol Bioeng; 2024 Jun; ():. PubMed ID: 38877732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatine-based drug-eluting bandage contact lenses: Effect of PEGDA concentration and manufacturing technique.
    Zidan G; Greene CA; Etxabide A; Rupenthal ID; Seyfoddin A
    Int J Pharm; 2021 Apr; 599():120452. PubMed ID: 33676990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,
    Sun T; Feng Z; He W; Li C; Han S; Li Z; Guo R
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37857284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative criteria to benchmark new and existing bio-inks for cell compatibility.
    Dubbin K; Tabet A; Heilshorn SC
    Biofabrication; 2017 Sep; 9(4):044102. PubMed ID: 28812982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D light-curing printing to construct versatile octopus-bionic patches.
    Li W; Hu X; Liu H; Tian J; Li L; Luo B; Zhou C; Lu L
    J Mater Chem B; 2023 Jun; 11(22):5010-5020. PubMed ID: 37221914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation.
    Şener Raman T; Kuehnert M; Daikos O; Scherzer T; Krömmelbein C; Mayr SG; Abel B; Schulze A
    Front Chem; 2022; 10():1094981. PubMed ID: 36700077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible light-induced 3D bioprinted injectable scaffold for minimally invasive tissue regeneration.
    Tilton M; Camilleri ET; Astudillo Potes MD; Gaihre B; Liu X; Lucien F; Elder BD; Lu L
    Biomater Adv; 2023 Oct; 153():213539. PubMed ID: 37429047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.