These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34738683)
1. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles. Gauthier M; Coutrot F Chemistry; 2021 Dec; 27(70):17576-17580. PubMed ID: 34738683 [TBL] [Abstract][Full Text] [Related]
2. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles? Riss-Yaw B; Morin J; Clavel C; Coutrot F Molecules; 2017 Nov; 22(11):. PubMed ID: 29160822 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle. Waelès P; Fournel-Marotte K; Coutrot F Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431 [TBL] [Abstract][Full Text] [Related]
5. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines. Busseron E; Coutrot F J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611 [TBL] [Abstract][Full Text] [Related]
6. Shuttling dynamics in an acid-base-switchable [2]rotaxane. Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757 [TBL] [Abstract][Full Text] [Related]
7. Controlling the chair conformation of a mannopyranose in a large-amplitude [2]rotaxane molecular machine. Coutrot F; Busseron E Chemistry; 2009; 15(21):5186-90. PubMed ID: 19229918 [TBL] [Abstract][Full Text] [Related]
8. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli. Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890 [TBL] [Abstract][Full Text] [Related]
9. An Interlocked Figure-of-Eight Molecular Shuttle. Gauthier M; Fournel-Marotte K; Clavel C; Waelès P; Laurent P; Coutrot F Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202310643. PubMed ID: 37594476 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements. Waelès P; Riss-Yaw B; Coutrot F Chemistry; 2016 May; 22(20):6837-45. PubMed ID: 27062072 [TBL] [Abstract][Full Text] [Related]
12. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations. Li H; Li X; Wu Y; Agren H; Qu DH J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771 [TBL] [Abstract][Full Text] [Related]
13. Bistable or oscillating state depending on station and temperature in three-station glycorotaxane molecular machines. Busseron E; Romuald C; Coutrot F Chemistry; 2010 Sep; 16(33):10062-73. PubMed ID: 20607770 [TBL] [Abstract][Full Text] [Related]
14. The Importance of Length and Flexibility of Macrocycle-Containing Molecular Translocators for the Synthesis of Improbable [2]Rotaxanes. Riss-Yaw B; Clavel C; Laurent P; Waelès P; Coutrot F Chemistry; 2018 Sep; 24(51):13659-13666. PubMed ID: 29969523 [TBL] [Abstract][Full Text] [Related]
15. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt Yu G; Suzaki Y; Osakada K Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709 [TBL] [Abstract][Full Text] [Related]
16. Non-Equilibrium Kinetic States of a [2]Rotaxane-Based Molecular Shuttle Controlled by Acid Concentrations. Zhao LM; Zheng LS; Wang X; Jiang W Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202214296. PubMed ID: 36251219 [TBL] [Abstract][Full Text] [Related]
17. The influence of metal-complexing macrocycle size on intramolecular movement in rotaxanes. Woźny M; Tomczyk KM; Więckowska A; Sutuła S; Trzybiński D; Woźniak K; Korybut-Daszkiewicz B Dalton Trans; 2019 May; 48(19):6546-6557. PubMed ID: 31011729 [TBL] [Abstract][Full Text] [Related]
18. Influence of axle length on the rate and mechanism of shuttling in rigid H-shaped [2]rotaxanes. Gholami G; Zhu K; Baggi G; Schott E; Zarate X; Loeb SJ Chem Sci; 2017 Nov; 8(11):7718-7723. PubMed ID: 29568435 [TBL] [Abstract][Full Text] [Related]
19. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station. Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078 [TBL] [Abstract][Full Text] [Related]
20. Molecular shuttles by the protecting group approach. Cao J; Fyfe MC; Stoddart JF; Cousins GR; Glink PT J Org Chem; 2000 Apr; 65(7):1937-46. PubMed ID: 10774012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]