BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34738780)

  • 1. Enhanced Salt Removal Performance Using Graphene-Modified Sodium Vanadium Fluorophosphate in Flow Electrode Capacitive Deionization.
    Sun Y; Cheng Y; Yu F; Ma J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53850-53858. PubMed ID: 34738780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow electrode capacitive desalination of industrial RO reject.
    Mathew A; Janakiraman M; Karunagaran JR; Ramasamy N; Natesan B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28764-28774. PubMed ID: 38558337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na
    Xing S; Cheng Y; Yu F; Ma J
    J Colloid Interface Sci; 2021 Sep; 598():511-518. PubMed ID: 33934016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization.
    Xu L; Peng S; Mao Y; Zong Y; Zhang X; Wu D
    Water Res; 2022 Jun; 216():118290. PubMed ID: 35306460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination.
    Zhang X; Zhou H; He Z; Zhang H; Zhao H
    Water Res; 2022 Jul; 220():118642. PubMed ID: 35635913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water.
    Zhang X; Pang M; Wei Y; Liu F; Zhang H; Zhou H
    Water Res; 2024 Mar; 251():121147. PubMed ID: 38277832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization.
    Shi C; Wang H; Li A; Zhu G; Zhao X; Wu F
    Water Res; 2023 Feb; 230():119517. PubMed ID: 36608524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Electrochemical Impedance Spectroscopy Study of Flow-Electrode Capacitive Deionization Cells.
    Kim N; Park J; Cho Y; Yoo CY
    Environ Sci Technol; 2023 Jun; 57(23):8808-8817. PubMed ID: 37230994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization.
    Hu B; Shang X; Nie P; Zhang B; Yang J; Liu J
    J Colloid Interface Sci; 2022 Apr; 612():392-400. PubMed ID: 34999544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system.
    Xu L; Mao Y; Zong Y; Wu D
    Water Res; 2021 Feb; 190():116782. PubMed ID: 33387952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Fabrication of NiCoAl-Layered Metal Oxide/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination.
    Li D; Wang S; Wang G; Li C; Che X; Wang S; Zhang Y; Qiu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31200-31209. PubMed ID: 31390520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system.
    Sriramulu D; Yang HY
    Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes.
    Tang K; Zhou K
    Environ Sci Technol; 2020 May; 54(9):5853-5863. PubMed ID: 32271562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-electrode capacitive deionization: A review and new perspectives.
    Yang F; He Y; Rosentsvit L; Suss ME; Zhang X; Gao T; Liang P
    Water Res; 2021 Jul; 200():117222. PubMed ID: 34029869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.