These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34738787)
1. Engineering Self-Adhesive Polyzwitterionic Hydrogel Electrolytes for Flexible Zinc-Ion Hybrid Capacitors with Superior Low-Temperature Adaptability. Fu Q; Hao S; Meng L; Xu F; Yang J ACS Nano; 2021 Nov; 15(11):18469-18482. PubMed ID: 34738787 [TBL] [Abstract][Full Text] [Related]
2. Toward Flexible Zinc-Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl Wang C; Pei Z; Meng Q; Zhang C; Sui X; Yuan Z; Wang S; Chen Y Angew Chem Int Ed Engl; 2021 Jan; 60(2):990-997. PubMed ID: 32969140 [TBL] [Abstract][Full Text] [Related]
3. Coupling of Adhesion and Anti-Freezing Properties in Hydrogel Electrolytes for Low-Temperature Aqueous-Based Hybrid Capacitors. Nan J; Sun Y; Yang F; Zhang Y; Li Y; Wang Z; Wang C; Wang D; Chu F; Wang C; Zhu T; Jiang J Nanomicro Lett; 2023 Nov; 16(1):22. PubMed ID: 37982913 [TBL] [Abstract][Full Text] [Related]
5. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075 [TBL] [Abstract][Full Text] [Related]
6. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347 [TBL] [Abstract][Full Text] [Related]
7. Flexible Antifreeze Zn-Ion Hybrid Supercapacitor Based on Gel Electrolyte with Graphene Electrodes. Liu J; Khanam Z; Ahmed S; Wang T; Wang H; Song S ACS Appl Mater Interfaces; 2021 Apr; 13(14):16454-16468. PubMed ID: 33789423 [TBL] [Abstract][Full Text] [Related]
8. Highly Transparent and Flexible Zn-Ti Huang L; Lin Y; Zeng W; Xu C; Chen Z; Wang Q; Zhou H; Yu Q; Zhao B; Ruan L; Wang S Langmuir; 2022 May; 38(19):5968-5976. PubMed ID: 35522587 [TBL] [Abstract][Full Text] [Related]
9. In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All-Hydrogel Supercapacitors with Low-Temperature Adaptability. Zhang Y; Sun Y; Nan J; Yang F; Wang Z; Li Y; Wang C; Chu F; Liu Y; Wang C Small; 2024 May; 20(22):e2309900. PubMed ID: 38312091 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional Zincophilic Hydrogel Electrolyte with Abundant Hydrogen Bonds for Zinc-Ion Capacitors and Supercapacitors. Cui S; Miao W; Wang X; Sun K; Peng H; Ma G ACS Nano; 2024 May; 18(19):12355-12366. PubMed ID: 38683957 [TBL] [Abstract][Full Text] [Related]
11. Alkaline Double-Network Hydrogels with High Conductivities, Superior Mechanical Performances, and Antifreezing Properties for Solid-State Zinc-Air Batteries. Sun N; Lu F; Yu Y; Su L; Gao X; Zheng L ACS Appl Mater Interfaces; 2020 Mar; 12(10):11778-11788. PubMed ID: 32073813 [TBL] [Abstract][Full Text] [Related]
12. A Flexible Rechargeable Zinc-Air Battery with Excellent Low-Temperature Adaptability. Pei Z; Yuan Z; Wang C; Zhao S; Fei J; Wei L; Chen J; Wang C; Qi R; Liu Z; Chen Y Angew Chem Int Ed Engl; 2020 Mar; 59(12):4793-4799. PubMed ID: 31916361 [TBL] [Abstract][Full Text] [Related]
13. Self-adhesive, freeze-tolerant, and strong hydrogel electrolyte containing xanthan gum enables the high-performance of zinc-ion hybrid supercapacitors. Zhou Y; Liu H; Zhou X; Lin X; Cai Y; Shen M; Huang X; Liu H; Xu X Int J Biol Macromol; 2024 Apr; 265(Pt 2):131143. PubMed ID: 38537861 [TBL] [Abstract][Full Text] [Related]
14. Developing high voltage Zn(TFSI) Zhang L; Liu Z; Wang G; Feng J; Ma Q Nanoscale; 2021 Oct; 13(40):17068-17076. PubMed ID: 34622898 [TBL] [Abstract][Full Text] [Related]
15. Single-Ion-Conducting Hydrogel Electrolytes Based on Slide-Ring Pseudo-Polyrotaxane for Ultralong-Cycling Flexible Zinc-Ion Batteries. Xia H; Xu G; Cao X; Miao C; Zhang H; Chen P; Zhou Y; Zhang W; Sun Z Adv Mater; 2023 Sep; 35(36):e2301996. PubMed ID: 37339158 [TBL] [Abstract][Full Text] [Related]
17. Improved Interfacial Ion Migration and Deposition through the Chain-Liquid Synergistic Effect by a Carboxylated Hydrogel Electrolyte for Stable Zinc Metal Anodes. Tian C; Wang J; Sun R; Ali T; Wang H; Xie BB; Zhong Y; Hu Y Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310970. PubMed ID: 37644643 [TBL] [Abstract][Full Text] [Related]
18. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators. Wang Y; Sun S; Wu X; Liang H; Zhang W Nanomicro Lett; 2023 Mar; 15(1):78. PubMed ID: 36988736 [TBL] [Abstract][Full Text] [Related]
19. Olive Leaves-Derived Hierarchical Porous Carbon as Cathode Material for Anti-Self-Discharge Zinc-Ion Hybrid Capacitor. Li H; Su P; Liao Q; Liu Y; Li Y; Niu X; Liu X; Wang K Small; 2023 Dec; 19(49):e2304172. PubMed ID: 37563809 [TBL] [Abstract][Full Text] [Related]
20. Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries. Huang S; Hou L; Li T; Jiao Y; Wu P Adv Mater; 2022 Apr; 34(14):e2110140. PubMed ID: 35122340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]