These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34738826)

  • 1. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids.
    Mráziková K; Šponer J; Mlýnský V; Auffinger P; Kruse H
    J Chem Inf Model; 2021 Nov; 61(11):5644-5657. PubMed ID: 34738826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions.
    Mráziková K; Kruse H; Mlýnský V; Auffinger P; Šponer J
    J Chem Inf Model; 2022 Dec; 62(23):6182-6200. PubMed ID: 36454943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lone Pair…π Contacts and Structure Signatures of r(UNCG) Tetraloops, Z-Turns, and Z-Steps: A WebFR3D Survey.
    Zirbel CL; Auffinger P
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short but Weak: The Z-DNA Lone-Pair⋅⋅⋅π Conundrum Challenges Standard Carbon Van der Waals Radii.
    Kruse H; Mrazikova K; D'Ascenzo L; Sponer J; Auffinger P
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16553-16560. PubMed ID: 32516461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs.
    Kalra K; Gorle S; Cavallo L; Oliva R; Chawla M
    Nucleic Acids Res; 2020 Jun; 48(11):5825-5838. PubMed ID: 32392301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs.
    Chawla M; Chermak E; Zhang Q; Bujnicki JM; Oliva R; Cavallo L
    Nucleic Acids Res; 2017 Nov; 45(19):11019-11032. PubMed ID: 28977572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Z-DNA like' fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response.
    D'Ascenzo L; Leonarski F; Vicens Q; Auffinger P
    Nucleic Acids Res; 2016 Jul; 44(12):5944-56. PubMed ID: 27151194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model.
    Li P; Song LF; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1645-57. PubMed ID: 26574374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydration structure of methylthiolate from QM/MM molecular dynamics.
    Awoonor-Williams E; Rowley CN
    J Chem Phys; 2018 Jul; 149(4):045103. PubMed ID: 30068187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions.
    Kührová P; Mlýnský V; Zgarbová M; Krepl M; Bussi G; Best RB; Otyepka M; Šponer J; Banáš P
    J Chem Theory Comput; 2019 May; 15(5):3288-3305. PubMed ID: 30896943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.
    Mládek A; Krepl M; Svozil D; Cech P; Otyepka M; Banáš P; Zgarbová M; Jurečka P; Sponer J
    Phys Chem Chem Phys; 2013 May; 15(19):7295-310. PubMed ID: 23575975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins.
    Lin FY; MacKerell AD
    J Comput Chem; 2020 Feb; 41(5):439-448. PubMed ID: 31518010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Description of Cation-π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost.
    Liu H; Fu H; Shao X; Cai W; Chipot C
    J Chem Theory Comput; 2020 Oct; 16(10):6397-6407. PubMed ID: 32852943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations.
    Kaukonen M; Gulans A; Havu P; Kauppinen E
    J Comput Chem; 2012 Mar; 33(6):652-8. PubMed ID: 22228486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking.
    Kruse H; Šponer J
    J Phys Chem A; 2019 Oct; 123(42):9209-9222. PubMed ID: 31560201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions.
    Li P; Merz KM
    J Chem Theory Comput; 2014 Jan; 10(1):289-297. PubMed ID: 24659926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.