These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34738941)
1. Determination of the through-plane profile of vanadium species in hydrated Nafion studied with micro X-ray absorption near-edge structure spectroscopy - proof of concept. Lutz C; Hampel S; Beuermann S; Turek T; Kunz U; Garrevoet J; Falkenberg G; Fittschen U J Synchrotron Radiat; 2021 Nov; 28(Pt 6):1865-1873. PubMed ID: 34738941 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes. Lutz C; Breuckmann M; Hampel S; Kreyenschmidt M; Ke X; Beuermann S; Schafner K; Turek T; Kunz U; Buzanich AG; Radtke M; Fittschen UEA Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436339 [TBL] [Abstract][Full Text] [Related]
3. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries. Vijayakumar M; Schwenzer B; Kim S; Yang Z; Thevuthasan S; Liu J; Graff GL; Hu J Solid State Nucl Magn Reson; 2012 Apr; 42():71-80. PubMed ID: 22192576 [TBL] [Abstract][Full Text] [Related]
4. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries. Kim S; Choi J; Choi C; Heo J; Kim DW; Lee JY; Hong YT; Jung HT; Kim HT Nano Lett; 2018 Jun; 18(6):3962-3968. PubMed ID: 29723474 [TBL] [Abstract][Full Text] [Related]
5. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries. Lou X; Yuan D; Yu Y; Lei Y; Ding M; Sun Q; Jia C Chem Asian J; 2020 Aug; 15(15):2357-2363. PubMed ID: 32166875 [TBL] [Abstract][Full Text] [Related]
6. Equilibrium and Dynamic Absorption of Electrolyte Species in Cation/Anion Exchange Membranes of Vanadium Redox Flow Batteries. Nguyen TD; Whitehead A; Wai N; Ong SJH; Scherer GG; Xu ZJ ChemSusChem; 2019 Mar; 12(5):1076-1083. PubMed ID: 30523669 [TBL] [Abstract][Full Text] [Related]
7. Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries. An H; Zhang R; Li W; Li P; Qian H; Yang H ACS Appl Mater Interfaces; 2022 Feb; 14(6):7845-7855. PubMed ID: 35104405 [TBL] [Abstract][Full Text] [Related]
8. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries. Jia C; Liu Q; Sun CJ; Yang F; Ren Y; Heald SM; Liu Y; Li ZF; Lu W; Xie J ACS Appl Mater Interfaces; 2014 Oct; 6(20):17920-5. PubMed ID: 25191695 [TBL] [Abstract][Full Text] [Related]
9. New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag. Chaurand P; Rose J; Briois V; Salome M; Proux O; Nassif V; Olivi L; Susini J; Hazemann JL; Bottero JY J Phys Chem B; 2007 May; 111(19):5101-10. PubMed ID: 17429991 [TBL] [Abstract][Full Text] [Related]
10. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium. Žižić M; Dučić T; Grolimund D; Bajuk-Bogdanović D; Nikolic M; Stanić M; Križak S; Zakrzewska J Anal Bioanal Chem; 2015 Sep; 407(24):7487-96. PubMed ID: 26253227 [TBL] [Abstract][Full Text] [Related]
11. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study. Sepehr F; Paddison SJ J Phys Chem A; 2015 Jun; 119(22):5749-61. PubMed ID: 25954916 [TBL] [Abstract][Full Text] [Related]
13. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery. Jung HY; Moon GO; Jung S; Kim HT; Kim SC; Roh SH J Nanosci Nanotechnol; 2017 Apr; 17(4):2563-566. PubMed ID: 29658688 [TBL] [Abstract][Full Text] [Related]
14. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries. Li J; Yuan X; Liu S; He Z; Zhou Z; Li A ACS Appl Mater Interfaces; 2017 Sep; 9(38):32643-32651. PubMed ID: 28880065 [TBL] [Abstract][Full Text] [Related]
16. A Sulfonated Polyimide/Nafion Blend Membrane with High Proton Selectivity and Remarkable Stability for Vanadium Redox Flow Battery. Li J; Liu J; Xu W; Long J; Huang W; He Z; Liu S; Zhang Y Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940447 [TBL] [Abstract][Full Text] [Related]
17. Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries. Ashraf Gandomi Y; Aaron DS; Nolan ZB; Ahmadi A; Mench MM Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32570827 [TBL] [Abstract][Full Text] [Related]
18. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries. Ashraf Gandomi Y; Aaron DS; Mench MM Membranes (Basel); 2017 Jun; 7(2):. PubMed ID: 28587268 [TBL] [Abstract][Full Text] [Related]
19. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- A review. Shaheen SM; Alessi DS; Tack FMG; Ok YS; Kim KH; Gustafsson JP; Sparks DL; Rinklebe J Adv Colloid Interface Sci; 2019 Mar; 265():1-13. PubMed ID: 30685738 [TBL] [Abstract][Full Text] [Related]
20. Ionic-Nanophase Hybridization of Nafion by Supramolecular Patching for Enhanced Proton Selectivity in Redox Flow Batteries. Zhai L; Zhu YL; Wang G; He H; Wang F; Jiang F; Chai S; Li X; Guo H; Wu L; Li H Nano Lett; 2023 May; 23(9):3887-3896. PubMed ID: 37094227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]