These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34739012)

  • 1. Electropumping of nanofluidic water by linear and angular momentum coupling: theoretical foundations and molecular dynamics simulations.
    Daivis PJ; Hansen JS; Todd BD
    Phys Chem Chem Phys; 2021 Nov; 23(44):25003-25018. PubMed ID: 34739012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of Electropumping in Nanochannels.
    Ostler D; Kannam SK; Frascoli F; Daivis PJ; Todd BD
    Nano Lett; 2020 May; 20(5):3396-3402. PubMed ID: 32293187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electropumping of water with rotating electric fields.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Apr; 138(15):154712. PubMed ID: 23614441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing a Net Positive Flow of Water in Functionalized Concentric Carbon Nanotubes Using Rotating Electric Fields.
    Ostler D; Kannam SK; Frascoli F; Daivis PJ; D Todd B
    Langmuir; 2019 Nov; 35(45):14742-14749. PubMed ID: 31614091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electropumping of Water Through Human Aquaporin 4 by Circularly Polarized Electric Fields: Dramatic Enhancement and Control Revealed by Non-Equilibrium Molecular Dynamics.
    Burnham CJ; English NJ
    J Phys Chem Lett; 2017 Oct; 8(19):4646-4651. PubMed ID: 28905623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electropumping Phenomenon in Modified Carbon Nanotubes.
    Ding C; Zhao Y; Su J
    Langmuir; 2021 Oct; 37(42):12318-12326. PubMed ID: 34644087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube.
    Zhao Y; Chen J; Huang D; Su J
    Langmuir; 2019 Oct; 35(41):13442-13451. PubMed ID: 31539260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant pumping of single-file water molecules in a carbon nanotube.
    Wang Y; Zhao YJ; Huang JP
    J Phys Chem B; 2011 Nov; 115(45):13275-9. PubMed ID: 21977917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoting Electroosmotic Water Flow through a Carbon Nanotube by Weakening the Competition between Cations and Anions in a Lateral Electric Field.
    Zhang X; Liu Y; Su J
    Langmuir; 2022 Mar; 38(11):3530-3539. PubMed ID: 35259293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries.
    Hansen JS; Daivis PJ; Todd BD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046322. PubMed ID: 19905451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
    Farimani AB; Heiranian M; Aluru NR
    Sci Rep; 2016 May; 6():26211. PubMed ID: 27193507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of angular momentum conservation on hydrodynamic simulations of colloids.
    Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations.
    Götze IO; Noguchi H; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046705. PubMed ID: 17995137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternating electric field-induced ion current rectification and electroosmotic pump in ultranarrow charged carbon nanocones.
    Li W; Wang W; Hou Q; Yan Y; Dai C; Zhang J
    Phys Chem Chem Phys; 2018 Nov; 20(44):27910-27916. PubMed ID: 30379156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Interface Adsorption Drives Selectivity in Atomically Smooth Nanofluidic Channels.
    Helms P; Poggioli AR; Limmer DT
    Nano Lett; 2023 May; 23(10):4226-4233. PubMed ID: 37159839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.