These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34739236)

  • 1. Optimal Excitation Wavelength for Surface-Enhanced Raman Spectroscopy: The Role of Chemical Interface Damping.
    Zhu S; Bao H; Zhang H; Fu H; Zhao Q; Zhou L; Li Y; Cai W
    J Phys Chem Lett; 2021 Nov; 12(45):11014-11021. PubMed ID: 34739236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells.
    Alizar YY; Ramasamy M; Kim GW; Ha JW
    JACS Au; 2023 Nov; 3(11):3247-3258. PubMed ID: 38034978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths.
    Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y
    Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hong YA; Ha JW
    Analyst; 2023 Aug; 148(16):3719-3723. PubMed ID: 37458613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes.
    Wasserroth S; Heeg S; Mueller NS; Kusch P; Hübner U; Gaufrès E; Tang NY; Martel R; Vijayaraghavan A; Reich S
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10578-10585. PubMed ID: 32064011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer.
    Liu W; Bai H; Li X; Li W; Zhai J; Li J; Xi G
    J Phys Chem Lett; 2018 Jul; 9(14):4096-4100. PubMed ID: 29979872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods.
    Ramasamy M; Ha JW
    J Phys Chem Lett; 2023 Jun; 14(25):5768-5775. PubMed ID: 37326616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced detection sensitivity of the chemisorption of pyridine and biotinylated proteins at localized surface plasmon resonance inflection points in single gold nanorods.
    Ryu KR; Ha JW
    Analyst; 2021 Jun; 146(11):3543-3548. PubMed ID: 33899843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy.
    Tan T; Tian C; Ren Z; Yang J; Chen Y; Sun L; Li Z; Wu A; Yin J; Fu H
    Phys Chem Chem Phys; 2013 Dec; 15(48):21034-42. PubMed ID: 24223426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering.
    Zhao F; Wang X; Zhang Y; Lu X; Xie H; Xu B; Ye W; Ni W
    Nanotechnology; 2020 May; 31(29):295601. PubMed ID: 32217813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Photochromism of Diarylethene Induced by Excitation of Localized Surface Plasmon Resonance on Regular Arrays of Gold Nanoparticles.
    Yasukuni R; Félidj N; Boubekeur-Lecaque L; Lau-Truong S; Aubard J
    Chemphyschem; 2020 Nov; 21(22):2614-2619. PubMed ID: 32926535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.