These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34739316)

  • 21. Efficient Direct Recycling of Degraded LiMn
    Gao H; Yan Q; Xu P; Liu H; Li M; Liu P; Luo J; Chen Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51546-51554. PubMed ID: 33151665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling.
    Wu X; Ma J; Wang J; Zhang X; Zhou G; Liang Z
    Glob Chall; 2022 Dec; 6(12):2200067. PubMed ID: 36532240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recycling of spent lithium-ion batteries for a sustainable future: recent advancements.
    Biswal BK; Zhang B; Thi Minh Tran P; Zhang J; Balasubramanian R
    Chem Soc Rev; 2024 Jun; 53(11):5552-5592. PubMed ID: 38644694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.
    Dash R; Pannala S
    Sci Rep; 2016 Jun; 6():27449. PubMed ID: 27311811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct recycling of spent Li-ion batteries: Challenges and opportunities toward practical applications.
    Wei G; Liu Y; Jiao B; Chang N; Wu M; Liu G; Lin X; Weng X; Chen J; Zhang L; Zhu C; Wang G; Xu P; Di J; Li Q
    iScience; 2023 Sep; 26(9):107676. PubMed ID: 37680490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation.
    Tokoro C; Lim S; Teruya K; Kondo M; Mochidzuki K; Namihira T; Kikuchi Y
    Waste Manag; 2021 Apr; 125():58-66. PubMed ID: 33684665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enabling Future Closed-Loop Recycling of Spent Lithium-Ion Batteries: Direct Cathode Regeneration.
    Yang T; Luo D; Yu A; Chen Z
    Adv Mater; 2023 Sep; 35(36):e2203218. PubMed ID: 37015003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positive Role of Fluorine Impurity in Recovered LiNi
    Zheng Y; Zhang R; Vanaphuti P; Liu Y; Yang Z; Wang Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57171-57181. PubMed ID: 34798774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling.
    Bhattacharyya S; Roy S; Vajtai R
    Small; 2024 Jun; ():e2400557. PubMed ID: 38922789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal.
    Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW
    Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.