These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3473962)

  • 21. Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis.
    Konings F; De Potter W
    FEBS Lett; 1981 Apr; 126(1):103-6. PubMed ID: 6786919
    [No Abstract]   [Full Text] [Related]  

  • 22. Amine transport in chromaffin granule ghosts. pH dependence implies cationic form is translocated.
    Knoth J; Isaacs JM; Njus D
    J Biol Chem; 1981 Jul; 256(13):6541-3. PubMed ID: 7240227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. deltapH and catecholamine distribution in isolated chromaffin granules.
    Johnson RG; Carlson NJ; Scarpa A
    J Biol Chem; 1978 Mar; 253(5):1512-21. PubMed ID: 24053
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of drugs on the ATP-induced and pH-gradient-driven monoamine transport by bovine chromaffin granules.
    Scherman D; Henry JP
    Biochem Pharmacol; 1980 Jul; 29(13):1883-90. PubMed ID: 7396997
    [No Abstract]   [Full Text] [Related]  

  • 25. Catecholamines (CA) and adenosine triphosphate (ATP) are separately stored in bovine adrenal medulla, both in ionic linkage to granule sites, and not as a non-diffusible CA-ATP-protein complex.
    Uvnäs B; Aborg CH
    Acta Physiol Scand; 1988 Mar; 132(3):297-311. PubMed ID: 3227876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential lysis of adrenaline- and noradrenaline-containing chromaffin granules promoted by the ionophore Br X537A.
    Papadopoulou-Daifotis ZP; Morris SJ
    Neuroscience; 1977; 2(4):609-19. PubMed ID: 411054
    [No Abstract]   [Full Text] [Related]  

  • 27. Correlation of the effects of bretylium, guanethidine, and N,N-diisopropyl-N'-isoamyl-N'-diethylaminoethylurea (P-286) on the H+ electrochemical gradient across the chromaffin granule membrane and on chromaffin granule function.
    Holz RW
    Mol Pharmacol; 1980 Nov; 18(3):606-10. PubMed ID: 7464823
    [No Abstract]   [Full Text] [Related]  

  • 28. Protonmotive force and catecholamine transport in isolated chromaffin granules.
    Johnson RG; Scarpa A
    J Biol Chem; 1979 May; 254(10):3750-60. PubMed ID: 438157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the monoamine uptake system in catecholamine storage vesicles isolated from a pheochromocytoma taken from a child.
    Roisin MP; Isambert MF; Henry JP; Guillot M; Lenoir G
    Biochem Pharmacol; 1984 Jul; 33(14):2245-52. PubMed ID: 6466347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolated chromaffin granules maintenance of ATP content during incubation at 31 degrees C.
    Baumgartner H; Winkler H; Hörtnagl H
    Eur J Pharmacol; 1973 Apr; 22(1):102-4. PubMed ID: 4706875
    [No Abstract]   [Full Text] [Related]  

  • 31. The adrenal chromaffin vesicle: an historical perspective.
    Carmichael SW
    J Auton Nerv Syst; 1983 Jan; 7(1):7-12. PubMed ID: 6341438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adenosine triphosphate in the bovine chromaffin granule.
    Phillips JH; Morton AG
    J Physiol (Paris); 1978; 74(5):503-8. PubMed ID: 34031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules.
    Douglas WW; Poisner AM
    J Physiol; 1966 Mar; 183(1):236-48. PubMed ID: 5945251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of catecholamine-storage organelles in transplantable phaeochromocytoma and adrenal glands of rats.
    Oberlechner E; Westhead E; Neuman B; Schmidt W; Fischer-Colbrie R; Weber A; Sperk G; Winkler H
    J Neurochem; 1982 Mar; 38(3):615-24. PubMed ID: 7057181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adrenal medullary chromaffin cells in vitro.
    Livett BG
    Physiol Rev; 1984 Oct; 64(4):1103-61. PubMed ID: 6208567
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of nicardipine and other Ca2+-antagonists on catecholamine transport into chromaffin granule membrane vesicles.
    Tachikawa E; Takahashi S; Shimizu C; Ohtsubo N; Kashimoto T; Takahashi E
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):305-8. PubMed ID: 6484315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement by F-actin of MgATP-dependent dopamine uptake into isolated chromaffin granules.
    Morita K; Tomares SM; Pollard HB
    Biochem Mol Biol Int; 1996 Sep; 40(1):61-6. PubMed ID: 8886270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla.
    Weber A; Westhead EW; Winkler H
    Biochem J; 1983 Mar; 210(3):789-94. PubMed ID: 6307271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of the transmembrane potential coupled to the ATP-evoked catecholamine release in isolated chromaffin granules.
    Ogawa M; Inouye A
    Jpn J Physiol; 1979; 29(3):309-25. PubMed ID: 502089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1-Methyl-4-phenylpyridinium is a substrate of the vesicular monoamine uptake system of chromaffin granules.
    Scherman D; Darchen F; Desnos C; Henry JP
    Eur J Pharmacol; 1988 Feb; 146(2-3):359-60. PubMed ID: 3259507
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.