These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3473963)

  • 1. The chromaffin granule: a model system for the study of hormones and neurotransmitters.
    Phillips JH; Pryde JG
    Ann N Y Acad Sci; 1987; 493():27-42. PubMed ID: 3473963
    [No Abstract]   [Full Text] [Related]  

  • 2. The molecular function of adrenal chromaffin granules: established facts and unresolved topics.
    Winkler H; Apps DK; Fischer-Colbrie R
    Neuroscience; 1986 Jun; 18(2):261-90. PubMed ID: 2942794
    [No Abstract]   [Full Text] [Related]  

  • 3. Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells.
    Patzak A; Böck G; Fischer-Colbrie R; Schauenstein K; Schmidt W; Lingg G; Winkler H
    J Cell Biol; 1984 May; 98(5):1817-24. PubMed ID: 6373784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both the transmembrane pH gradient and the membrane potential are important in the accumulation of amines by resealed chromaffin-granule 'ghosts'.
    Apps DK; Pryde JG; Phillips JH
    FEBS Lett; 1980 Mar; 111(2):386-90. PubMed ID: 7358179
    [No Abstract]   [Full Text] [Related]  

  • 5. Specificity of synexin-induced chromaffin granule aggregation.
    Dabrow M; Zaremba S; Hogue-Angeletti RA
    Biochem Biophys Res Commun; 1980 Oct; 96(3):1164-71. PubMed ID: 6449199
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane recycling after exocytosis: an ultrastructural study of cultured chromaffin cells.
    Patzak A; Aunis D; Langley K
    Exp Cell Res; 1987 Aug; 171(2):346-56. PubMed ID: 3622639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chromaffin granule as a model for membrane fusion: implications for exocytosis.
    Morris SJ; Costello MJ; Robertson JD; Südhof TC; Odenwald WF; Haynes DH
    J Auton Nerv Syst; 1983 Jan; 7(1):19-33. PubMed ID: 6841901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent regulation of chromaffin granule movement, membrane contact, and fusion during exocytosis.
    Pollard HB; Creutz CE; Fowler V; Scott J; Pazoles CJ
    Cold Spring Harb Symp Quant Biol; 1982; 46 Pt 2():819-34. PubMed ID: 6213354
    [No Abstract]   [Full Text] [Related]  

  • 9. The cell-free interaction between chromaffin granules and plasma membranes: an in vitro model for exocytosis?
    De Block J; De Potter W
    Biochem Biophys Res Commun; 1987 Oct; 148(2):896-7. PubMed ID: 3689379
    [No Abstract]   [Full Text] [Related]  

  • 10. Synexin and chromaffin granule membrane fusion. A novel "hydrophobic bridge" hypothesis for the driving and directing of the fusion process.
    Pollard HB; Rojas E; Burns AL
    Ann N Y Acad Sci; 1987; 493():524-41. PubMed ID: 2954501
    [No Abstract]   [Full Text] [Related]  

  • 11. Rat adrenal medulla: levels of chromogranins, enkephalins, dopamine beta-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy.
    Sietzen M; Schober M; Fischer-Colbrie R; Scherman D; Sperk G; Winkler H
    Neuroscience; 1987 Jul; 22(1):131-9. PubMed ID: 2819772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chromaffin granule and possible mechanisms of exocytosis.
    Pollard HB; Pazoles CJ; Creutz CE; Zinder O
    Int Rev Cytol; 1979; 58():159-97. PubMed ID: 391762
    [No Abstract]   [Full Text] [Related]  

  • 13. Chromaffin granule-cytoskeleton interaction. Stabilization by F-actin of ATPase in purified chromaffin granule membranes.
    Morita K; Pollard HB
    FEBS Lett; 1985 Feb; 181(2):195-8. PubMed ID: 3156051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential scanning calorimetry of chromaffin granule membranes.
    Bach D; Rosenheck K; Schneider AS
    Experientia; 1979 Jun; 35(6):750-1. PubMed ID: 467576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different osmotic stability of two storage pools of adrenomedullary catecholamines: possible relevance to exocytotic release of the hormones.
    Serck-Hanssen G
    Acta Physiol Scand; 1984 Jan; 120(1):137-40. PubMed ID: 6720322
    [No Abstract]   [Full Text] [Related]  

  • 16. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content.
    Konings F; De Potter W
    Biochem Biophys Res Commun; 1982 Jan; 104(1):254-8. PubMed ID: 7073671
    [No Abstract]   [Full Text] [Related]  

  • 17. Tensile strength of the chromaffin granule membrane.
    Hiram Y; Nir A; Zinder O
    Biophys J; 1982 Jul; 39(1):65-9. PubMed ID: 7104452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water permeability of the chromaffin granule membrane.
    Sharp RR; Sen R
    Biophys J; 1982 Oct; 40(1):17-25. PubMed ID: 7139032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation and the exocytosis-like interaction between isolated adrenal medullary plasma membranes and chromaffin granules.
    Konings F; De Potter W
    Biochem Biophys Res Commun; 1983 Jan; 110(1):55-60. PubMed ID: 6687680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of intracellular proteins in the regulation of calcium action and transmitter release during exocytosis.
    Pollard HB; Pazoles CJ; Creutz CE; Zinder O
    Monogr Neural Sci; 1980; 7():106-16. PubMed ID: 6112701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.