These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3473964)

  • 1. The role of secretory granules in peptide biosynthesis.
    Mains RE; Cullen EI; May V; Eipper BA
    Ann N Y Acad Sci; 1987; 493():278-91. PubMed ID: 3473964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of proTRH to its intermediate products occurs before the packing into secretory granules of transfected AtT20 cells.
    Nillni EA; Sevarino KA; Jackson IM
    Endocrinology; 1993 Mar; 132(3):1271-7. PubMed ID: 8440188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exocrine secretion granules contain peptide amidation activity.
    von Zastrow M; Tritton TR; Castle JD
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3297-301. PubMed ID: 3458183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid.
    Eipper BA; Mains RE; Glembotski CC
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):5144-8. PubMed ID: 6576381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttranslational processing of carboxypeptidase E, a neuropeptide-processing enzyme, in AtT-20 cells and bovine pituitary secretory granules.
    Fricker LD; Devi L
    J Neurochem; 1993 Oct; 61(4):1404-15. PubMed ID: 8376994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolactin (PRL) processing by kallikrein: production of the 21-23.5K PRL-like molecules and inferences about PRL storage in mature secretory granules.
    Ho TW; Balden E; Chao J; Walker AM
    Endocrinology; 1991 Jul; 129(1):184-92. PubMed ID: 2055182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules.
    Milgram SL; Johnson RC; Mains RE
    J Cell Biol; 1992 May; 117(4):717-28. PubMed ID: 1577852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper, zinc and calcium: imaging and quantification in anterior pituitary secretory granules.
    Bonnemaison ML; Duffy ME; Mains RE; Vogt S; Eipper BA; Ralle M
    Metallomics; 2016 Sep; 8(9):1012-22. PubMed ID: 27426256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of prohormone-processing activities in islet microsomes and secretory granules: evidence for distinct converting enzymes for separate islet prosomatostatins.
    Noe BD; Debo G; Spiess J
    J Cell Biol; 1984 Aug; 99(2):578-87. PubMed ID: 6146629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct molecular events during secretory granule biogenesis revealed by sensitivities to brefeldin A.
    Fernandez CJ; Haugwitz M; Eaton B; Moore HP
    Mol Biol Cell; 1997 Nov; 8(11):2171-85. PubMed ID: 9362061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular sites of proteolytic processing of pro-opiomelanocortin in melanotrophs and corticotrophs in rat pituitary.
    Tanaka S; Nomizu M; Kurosumi K
    J Histochem Cytochem; 1991 Jun; 39(6):809-21. PubMed ID: 1851777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis of secretory granules. Implications arising from the immature secretory granule in the regulated pathway of secretion.
    Tooze SA
    FEBS Lett; 1991 Jul; 285(2):220-4. PubMed ID: 1906810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of cholecystokinin forms in intestinal secretory granule subtypes.
    Turkelson CM; Hamilton J
    Endocrinology; 1992 Dec; 131(6):2533-9. PubMed ID: 1446595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibodies to secretogranin II reveal potential processing sites.
    Tooze SA; Hollinshead M; Dittié AS
    Biochimie; 1994; 76(3-4):271-6. PubMed ID: 7819334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and targeting of granule proteins in human neutrophils.
    Gullberg U; Bengtsson N; Bülow E; Garwicz D; Lindmark A; Olsson I
    J Immunol Methods; 1999 Dec; 232(1-2):201-10. PubMed ID: 10618521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential trafficking of soluble and integral membrane secretory granule-associated proteins.
    Milgram SL; Eipper BA; Mains RE
    J Cell Biol; 1994 Jan; 124(1-2):33-41. PubMed ID: 8294504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands.
    Flucher BE; Lenglachner-Bachinger C; Pohlhammer K; Adam H; Mollay C
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2299-309. PubMed ID: 3782298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of constitutive and constitutive-like secretion in semi-intact pituitary cells.
    Dumermuth E; Moore HP
    Methods; 1998 Oct; 16(2):188-97. PubMed ID: 9790865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GH3 cells transfected with gonadotropin-releasing hormone (GnRH) receptor complementary deoxyribonucleic acid release secretogranin-II through a constitutive pathway after GnRH analog-regulated synthesis: evidence that secretory proteins do not contain a sequence that obligates processing through a secretory granule or by regulated secretion.
    Janovick JA; Jennes L; Conn PM
    Endocrinology; 1995 Jan; 136(1):202-8. PubMed ID: 7828532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.