BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 347397)

  • 1. 1H NMR of valine tRNA modified bases. Evidence for multiple conformations.
    Kastrup RV; Schmidt PG
    Nucleic Acids Res; 1978 Jan; 5(1):257-69. PubMed ID: 347397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding.
    Kastrup RV; Schmidt PG
    Biochemistry; 1975 Aug; 14(16):3612-8. PubMed ID: 1100098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative structural analysis of 1-methyladenosine, 7-methylguanosine, ethenoadenosine and their protonated salts IV: 1H, 13C, and 15N NMR studies at natural isotope abundance.
    Sierzputowska-Gracz H; Gopal HD; Agris PF
    Nucleic Acids Res; 1986 Oct; 14(19):7783-801. PubMed ID: 3022235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations.
    Rordorf BF; Kearns DR
    Biochemistry; 1976 Jul; 15(15):3320-30. PubMed ID: 782517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance.
    Hurd RE; Reid BR
    Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical studies of denatured tRNA2Glu from Escherichia coli.
    Bina-Stein M; Crothers DM; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2216-20. PubMed ID: 781670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P magnetic resonance of tRNA.
    Guéron M; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3482-5. PubMed ID: 242005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance.
    Davanloo P; Sprinzl M; Watanabe K; Albani M; Kersten H
    Nucleic Acids Res; 1979 Apr; 6(4):1571-81. PubMed ID: 377228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunospecific retention of oligonucleotides possessing N6-methyladenosine and 7-methylguanosine.
    Munns TW; Sims HF; Liszewski MK
    J Biol Chem; 1977 May; 252(9):3102-4. PubMed ID: 323262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe.
    Agris PF; Sierzputowska-Gracz H; Smith C
    Biochemistry; 1986 Sep; 25(18):5126-31. PubMed ID: 3533144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study.
    Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH
    Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of the structural change induced in tRNA fMET (Escherichia coli) by acidic pH.
    Bina-Stein M; Crothers DM
    Biochemistry; 1975 Sep; 14(19):4185-91. PubMed ID: 241372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rabbit liver tRNA1Val:II. unusual secondary structure of T psi C stem and loop due to a U54:A60 base pair.
    Jank P; Riesner D; Gross HJ
    Nucleic Acids Res; 1977 Jun; 4(6):2009-200. PubMed ID: 331268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 360 MHz PMR studies on the involvement of the Y-nucleoside in the conformation of 2'-OMeGpApApYpAppsi from torula yeast tRNAphe.
    Dea P; Alta M; Patt S; Schweizer MP
    Nucleic Acids Res; 1978 Feb; 5(2):307-15. PubMed ID: 634791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.
    Agris PF; Schmidt PG
    Nucleic Acids Res; 1980 May; 8(9):2085-91. PubMed ID: 6159600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs.
    Caron M; Dugas H
    Nucleic Acids Res; 1976 Jan; 3(1):35-47. PubMed ID: 175354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 19F nuclear magnetic resonance of 5-fluorouridine-substituted tRNA1Val from Escherichia coli.
    Horowitz J; Ofengand J; Daniel WE; Cohn M
    J Biol Chem; 1977 Jun; 252(12):4418-20. PubMed ID: 325008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.