BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34739814)

  • 1. Utilization of Agricultural Waste from Paddy (Rice) Fields for the Synthesis of Nanocellulose.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3622-3629. PubMed ID: 34739814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.
    Kalita E; Nath BK; Deb P; Agan F; Islam MR; Saikia K
    Carbohydr Polym; 2015 May; 122():308-13. PubMed ID: 25817673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled release fertilizer delivery system derived from rice straw cellulose nanofibres: a circular economy based solution for sustainable development.
    Sharma N; Allardyce BJ; Rajkhowa R; Agrawal R
    Bioengineered; 2023 Dec; 14(1):2242124. PubMed ID: 37548430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose.
    Chakraborty I; Rongpipi S; Govindaraju I; B R; Mal SS; Gomez EW; Gomez ED; Kalita RD; Nath Y; Mazumder N
    Microsc Res Tech; 2022 May; 85(5):1990-2015. PubMed ID: 35040538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of cellulose nanocrystals from different waste bio-mass collating their liquid crystal ordering with morphological exploration.
    Verma C; Chhajed M; Gupta P; Roy S; Maji PK
    Int J Biol Macromol; 2021 Apr; 175():242-253. PubMed ID: 33561456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis and characterization of UKMRC-8 rice husk-derived mesoporous silica nanoparticle for agricultural application.
    Dorairaj D; Govender N; Zakaria S; Wickneswari R
    Sci Rep; 2022 Nov; 12(1):20162. PubMed ID: 36424408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride.
    Babicka M; Woźniak M; Dwiecki K; Borysiak S; Ratajczak I
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32231037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of nanocellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method.
    Raju V; Revathiswaran R; Subramanian KS; Parthiban KT; Chandrakumar K; Anoop EV; Chirayil CJ
    Sci Rep; 2023 Jan; 13(1):1199. PubMed ID: 36681725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment.
    Hafid HS; Omar FN; Zhu J; Wakisaka M
    Carbohydr Polym; 2021 May; 260():117789. PubMed ID: 33712137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic silica-metal phosphate (metal = Ca, Fe or Zn) nanocomposites: fabrication from rice husk and their biomedical applications.
    Athinarayanan J; Periasamy VS; Alshatwi AA
    J Mater Sci Mater Med; 2014 Jul; 25(7):1637-44. PubMed ID: 24744008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response.
    Bae DH; Choi HJ; Choi K; Nam JD; Islam MS; Kao N
    Carbohydr Polym; 2017 Jun; 165():247-254. PubMed ID: 28363547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres.
    Sharma N; Allardyce BJ; Rajkhowa R; Agrawal R
    Sci Rep; 2023 Sep; 13(1):16327. PubMed ID: 37770522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro bioactivity of silicate-phosphate glasses using agriculture biomass silica.
    Kaur D; Reddy MS; Pandey OP
    J Mater Sci Mater Med; 2020 Jul; 31(8):65. PubMed ID: 32696287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of cellulose nanocrystals from spent edible fungus substrate.
    He Q; Yang Y; Liu Z; Shao D; Jiang D; Xing L; Pan Q; Shan H
    J Sci Food Agric; 2022 May; 102(7):2761-2772. PubMed ID: 34719041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum).
    Midhun Dominic CD; Raj V; Neenu KV; Begum PMS; Formela K; Saeb MR; Prabhu DD; Poornima Vijayan P; Ajithkumar TG; Parameswaranpillai J
    Int J Biol Macromol; 2022 May; 206():92-104. PubMed ID: 35217088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.