BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 34740055)

  • 1. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus.
    Qiao Z; Wei N; Jin L; Zhang H; Luo J; Zhang Y; Wang K
    Bioorg Chem; 2021 Dec; 117():105455. PubMed ID: 34740055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Se-S Bond Formation in the Covalent Inhibition Mechanism of SARS-CoV-2 Main Protease by Ebselen-like Inhibitors: A Computational Study.
    Parise A; Romeo I; Russo N; Marino T
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Biosafety Level 1 Cellular Assay for Identifying Small-Molecule Antivirals Targeting the Main Protease of SARS-CoV-2: Evaluation of Cellular Activity of GC376, Boceprevir, Carmofur, Ebselen, and Selenoneine.
    Fukumoto Y; Suzuki N; Hara R; Tanaka YK; Ogra Y
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals.
    Sun LY; Chen C; Su J; Li JQ; Jiang Z; Gao H; Chigan JZ; Ding HH; Zhai L; Yang KW
    Bioorg Chem; 2021 Jul; 112():104889. PubMed ID: 33915460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives.
    Nogara PA; Omage FB; Bolzan GR; Delgado CP; Aschner M; Orian L; Teixeira Rocha JB
    Mol Inform; 2021 Aug; 40(8):e2100028. PubMed ID: 34018687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Activity Studies Reveal Scope for Optimisation of Ebselen-Type Inhibition of SARS-CoV-2 Main Protease.
    Thun-Hohenstein STD; Suits TF; Malla TR; Tumber A; Brewitz L; Choudhry H; Salah E; Schofield CJ
    ChemMedChem; 2022 Feb; 17(4):e202100582. PubMed ID: 34850566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives.
    Amporndanai K; Meng X; Shang W; Jin Z; Rogers M; Zhao Y; Rao Z; Liu ZJ; Yang H; Zhang L; O'Neill PM; Samar Hasnain S
    Nat Commun; 2021 May; 12(1):3061. PubMed ID: 34031399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants.
    Le UNP; Chang YJ; Lu CH; Chen Y; Su WC; Chao ST; Baltina LA; Petrova SF; Li SR; Hung MC; Lai MMC; Baltina LA; Lin CW
    Antiviral Res; 2024 Jul; 227():105920. PubMed ID: 38821317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach.
    Gupta Y; Kumar S; Zak SE; Jones KA; Upadhyay C; Sharma N; Azizi SA; Kathayat RS; Poonam ; Herbert AS; Durvasula R; Dickinson BC; Dye JM; Rathi B; Kempaiah P
    Bioorg Med Chem; 2021 Oct; 47():116393. PubMed ID: 34509862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface.
    Liang J; Karagiannis C; Pitsillou E; Darmawan KK; Ng K; Hung A; Karagiannis TC
    Comput Biol Chem; 2020 Dec; 89():107372. PubMed ID: 32911432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (M
    Ghosh A; Chakraborty M; Chandra A; Alam MP
    J Mol Model; 2021 Feb; 27(3):97. PubMed ID: 33641023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into crystal structures and identification of potential styrylthieno[2,3-
    El Bakri Y; Ahmad B; Saravanan K; Ahmad I; Bakhite EA; Younis O; Al-Waleedy SAH; Ibrahim OF; Nafady A; Mague JT; Mohamed SK
    J Biomol Struct Dyn; 2024 May; 42(8):4325-4343. PubMed ID: 37318002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering inhibitory activity of marine algae Ecklonia cava phlorotannins against SARS CoV-2 main protease: A coupled in-silico docking and molecular dynamics simulation study.
    Chakraborty A; Ghosh R; Barik S; Mohapatra SS; Biswas A; Chowdhuri S
    Gene; 2024 Oct; 926():148620. PubMed ID: 38821329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L.
    Costanzi E; Kuzikov M; Esposito F; Albani S; Demitri N; Giabbai B; Camasta M; Tramontano E; Rossetti G; Zaliani A; Storici P
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposing of antimycobacterium drugs for COVID-19 treatment by targeting SARS CoV-2 main protease: An in-silico perspective.
    Chakraborty A; Ghosh R; Soumya Mohapatra S; Barik S; Biswas A; Chowdhuri S
    Gene; 2024 Sep; 922():148553. PubMed ID: 38734190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of the interactions between Ebselen and derivatives with the active site of the main protease from SARS-CoV-2.
    Rieder GS; Nogara PA; Omage FB; Duarte T; Dalla Corte CL; da Rocha JBT
    Comput Biol Chem; 2023 Dec; 107():107956. PubMed ID: 37748316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
    Shitrit A; Zaidman D; Kalid O; Bloch I; Doron D; Yarnizky T; Buch I; Segev I; Ben-Zeev E; Segev E; Kobiler O
    Sci Rep; 2020 Nov; 10(1):20808. PubMed ID: 33257760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19.
    Rai H; Barik A; Singh YP; Suresh A; Singh L; Singh G; Nayak UY; Dubey VK; Modi G
    Mol Divers; 2021 Aug; 25(3):1905-1927. PubMed ID: 33582935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors.
    Amin SA; Banerjee S; Ghosh K; Gayen S; Jha T
    Bioorg Med Chem; 2021 Jan; 29():115860. PubMed ID: 33191083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2.
    Du A; Zheng R; Disoma C; Li S; Chen Z; Li S; Liu P; Zhou Y; Shen Y; Liu S; Zhang Y; Dong Z; Yang Q; Alsaadawe M; Razzaq A; Peng Y; Chen X; Hu L; Peng J; Zhang Q; Jiang T; Mo L; Li S; Xia Z
    Int J Biol Macromol; 2021 Apr; 176():1-12. PubMed ID: 33548314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.