These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34740240)

  • 1. Differences in evolutionary accessibility determine which equally effective regulatory motif evolves to generate pulses.
    Xiong K; Gerstein M; Masel J
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise.
    Xiong K; Lancaster AK; Siegal ML; Masel J
    Nat Commun; 2019 Jun; 10(1):2418. PubMed ID: 31160574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.
    Ronen M; Botstein D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):389-94. PubMed ID: 16381818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genomics and transcriptional consequences of regulatory motif variation in globally diverse Saccharomyces cerevisiae strains.
    Connelly CF; Skelly DA; Dunham MJ; Akey JM
    Mol Biol Evol; 2013 Jul; 30(7):1605-13. PubMed ID: 23619145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimerization of yeast transcription factors Ino2 and Ino4 is regulated by precursors of phospholipid biosynthesis mediated by Opi1 repressor.
    Kumme J; Dietz M; Wagner C; Schüller HJ
    Curr Genet; 2008 Jul; 54(1):35-45. PubMed ID: 18542964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of transcriptional variability by overlapping feed-forward regulatory motifs.
    Ratushny AV; Ramsey SA; Roda O; Wan Y; Smith JJ; Aitchison JD
    Biophys J; 2008 Oct; 95(8):3715-23. PubMed ID: 18621837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription.
    Kuttykrishnan S; Sabina J; Langton LL; Johnston M; Brent MR
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16743-8. PubMed ID: 20810924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial organization of the transcriptional regulatory network of Saccharomyces cerevisiae.
    Sun DQ; Tian L; Ma BG
    FEBS Lett; 2019 Apr; 593(8):876-884. PubMed ID: 30908624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of the feed-forward loop network motif.
    Mangan S; Alon U
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):11980-5. PubMed ID: 14530388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimality and thermodynamics determine the evolution of transcriptional regulatory networks.
    Avila-Elchiver M; Nagrath D; Yarmush ML
    Mol Biosyst; 2012 Feb; 8(2):511-530. PubMed ID: 22076617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes.
    Klutstein M; Siegfried Z; Gispan A; Farkash-Amar S; Zinman G; Bar-Joseph Z; Simchen G; Simon I
    BMC Genomics; 2010 Aug; 11():478. PubMed ID: 20716365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary rates and centrality in the yeast gene regulatory network.
    Jovelin R; Phillips PC
    Genome Biol; 2009; 10(4):R35. PubMed ID: 19358738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing regulatory features of the current transcriptional network of Saccharomyces cerevisiae.
    Monteiro PT; Pedreira T; Galocha M; Teixeira MC; Chaouiya C
    Sci Rep; 2020 Oct; 10(1):17744. PubMed ID: 33082399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary modelling of feed forward loops in gene regulatory networks.
    Cooper MB; Loose M; Brookfield JF
    Biosystems; 2008 Jan; 91(1):231-44. PubMed ID: 18082936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial epigenetic control of mono- and bistable gene expression.
    Kelemen JZ; Ratna P; Scherrer S; Becskei A
    PLoS Biol; 2010 Mar; 8(3):e1000332. PubMed ID: 20305717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1.
    Rubin-Bejerano I; Mandel S; Robzyk K; Kassir Y
    Mol Cell Biol; 1996 May; 16(5):2518-26. PubMed ID: 8628320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.