These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34740240)

  • 21. Spatial epigenetic control of mono- and bistable gene expression.
    Kelemen JZ; Ratna P; Scherrer S; Becskei A
    PLoS Biol; 2010 Mar; 8(3):e1000332. PubMed ID: 20305717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1.
    Rubin-Bejerano I; Mandel S; Robzyk K; Kassir Y
    Mol Cell Biol; 1996 May; 16(5):2518-26. PubMed ID: 8628320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unravelling the transcriptional regulation of Saccharomyces cerevisiae UGA genes: the dual role of transcription factor Leu3.
    Palavecino-Ruiz M; Bermudez-Moretti M; Correa-Garcia S
    Microbiology (Reading); 2017 Nov; 163(11):1692-1701. PubMed ID: 29058647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis.
    Hoppen J; Repenning A; Albrecht A; Geburtig S; Schüller HJ
    Yeast; 2005 Jun; 22(8):601-13. PubMed ID: 16034810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8.
    Rahner A; Schöler A; Martens E; Gollwitzer B; Schüller HJ
    Nucleic Acids Res; 1996 Jun; 24(12):2331-7. PubMed ID: 8710504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes.
    Ishihara S; Fujimoto K; Shibata T
    Genes Cells; 2005 Nov; 10(11):1025-38. PubMed ID: 16236132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleosomal proofreading of activator-promoter interactions.
    Shelansky R; Boeger H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2456-2461. PubMed ID: 31964832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis.
    Ignatius Pang CN; Goel A; Wilkins MR
    J Proteome Res; 2018 Mar; 17(3):1014-1030. PubMed ID: 29392949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
    Palomino A; Herrero P; Moreno F
    Nucleic Acids Res; 2006; 34(5):1427-38. PubMed ID: 16528100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes.
    Smith RL; Johnson AD
    Trends Biochem Sci; 2000 Jul; 25(7):325-30. PubMed ID: 10871883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network.
    Pougach K; Voet A; Kondrashov FA; Voordeckers K; Christiaens JF; Baying B; Benes V; Sakai R; Aerts J; Zhu B; Van Dijck P; Verstrepen KJ
    Nat Commun; 2014 Sep; 5():4868. PubMed ID: 25204769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.
    Kim JH; Brachet V; Moriya H; Johnston M
    Eukaryot Cell; 2006 Jan; 5(1):167-73. PubMed ID: 16400179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of transcription factor function by an amino acid: activation of Put3p by proline.
    Sellick CA; Reece RJ
    EMBO J; 2003 Oct; 22(19):5147-53. PubMed ID: 14517252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational sources of
    Duveau F; Vande Zande P; Metzger BP; Diaz CJ; Walker EA; Tryban S; Siddiq MA; Yang B; Wittkopp PJ
    Elife; 2021 Aug; 10():. PubMed ID: 34463616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.