These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34741038)

  • 1. Marine phytoplankton functional types exhibit diverse responses to thermal change.
    Anderson SI; Barton AD; Clayton S; Dutkiewicz S; Rynearson TA
    Nat Commun; 2021 Nov; 12(1):6413. PubMed ID: 34741038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean.
    Anderson SI; Fronda C; Barton AD; Clayton S; Rynearson TA; Dutkiewicz S
    Glob Chang Biol; 2024 Jan; 30(1):e17093. PubMed ID: 38273480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.
    Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B
    Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming.
    Bishop IW; Anderson SI; Collins S; Rynearson TA
    Glob Chang Biol; 2022 Oct; 28(19):5755-5767. PubMed ID: 35785458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change.
    Ye M; Xiao M; Zhang S; Huang J; Lin J; Lu Y; Liang S; Zhao J; Dai X; Xu L; Li M; Zhou Y; Overmans S; Xia J; Jin P
    Mar Environ Res; 2023 Jun; 188():106008. PubMed ID: 37121174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoplankton diversity and chemotaxonomy in contrasting North Pacific ecosystems.
    Matek A; Bosak S; Šupraha L; Neeley A; Višić H; Cetinić I; Ljubešić Z
    PeerJ; 2023; 11():e14501. PubMed ID: 36620747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decadal changes in global phytoplankton compositions influenced by biogeochemical variables.
    Mishra RK; Jena B; Venkataramana V; Sreerag A; Soares MA; AnilKumar N
    Environ Res; 2022 Apr; 206():112546. PubMed ID: 34902377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate.
    Sylvander P; Häubner N; Snoeijs P
    Microb Ecol; 2013 Apr; 65(3):566-77. PubMed ID: 23263236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100.
    Kléparski L; Beaugrand G; Edwards M; Ostle C
    Glob Chang Biol; 2023 Jul; 29(13):3833-3849. PubMed ID: 37026559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally induced functional shifts in phytoplankton and their potential consequences for ecosystem functioning.
    Di Pane J; Wiltshire KH; McLean M; Boersma M; Meunier CL
    Glob Chang Biol; 2022 Apr; 28(8):2804-2819. PubMed ID: 35068029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.
    Marañón E; Lorenzo MP; Cermeño P; Mouriño-Carballido B
    ISME J; 2018 Jun; 12(7):1836-1845. PubMed ID: 29695860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change.
    Seifert M; Nissen C; Rost B; Vogt M; Völker C; Hauck J
    Glob Chang Biol; 2023 Aug; 29(15):4234-4258. PubMed ID: 37265254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO
    Seifert M; Rost B; Trimborn S; Hauck J
    Glob Chang Biol; 2020 Dec; 26(12):6787-6804. PubMed ID: 32905664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal niche evolution of functional traits in a tropical marine phototroph.
    Baker KG; Radford DT; Evenhuis C; Kuzhiumparam U; Ralph PJ; Doblin MA
    J Phycol; 2018 Dec; 54(6):799-810. PubMed ID: 29901841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoplankton community organization and succession by sea warming: A case study in thermal discharge area of the northern coastal seawater of China.
    Dong Y; Zuo L; Ma W; Chen Z; Cui L; Lu S
    Mar Pollut Bull; 2021 Aug; 169():112538. PubMed ID: 34077832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P; Agustí S
    Sci Rep; 2018 Dec; 8(1):17771. PubMed ID: 30538260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming and eutrophication combine to restructure diatoms and dinoflagellates.
    Xiao W; Liu X; Irwin AJ; Laws EA; Wang L; Chen B; Zeng Y; Huang B
    Water Res; 2018 Jan; 128():206-216. PubMed ID: 29107905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoplankton community, structure and succession delineated by partial least square regression in Daya Bay, South China Sea.
    Wu ML; Wang YT; Cheng H; Sun FL; Fei J; Sun CC; Yin JP; Zhao H; Wang YS
    Ecotoxicology; 2020 Aug; 29(6):751-761. PubMed ID: 32189146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea.
    Wang Z; Zhao J; Zhang Y; Cao Y
    J Environ Sci (China); 2009; 21(9):1268-75. PubMed ID: 19999976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Growth Phase, Pigment Adaptation, and Climate Change Conditions on the Cellular Pigment and Carbon Content of Fifty-One Phytoplankton Isolates.
    Neeley AR; Lomas MW; Mannino A; Thomas C; Vandermeulen R
    J Phycol; 2022 Oct; 58(5):669-690. PubMed ID: 35844156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.