These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34741080)

  • 1. Gate induced quantum wires in GaAs/AlGaAs heterostructures by cleaved edge deposition.
    Alt L; Reichl C; Berl M; Dietsche W; Wegscheider W
    Sci Rep; 2021 Nov; 11(1):21736. PubMed ID: 34741080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D-1D coupling in cleaved edge overgrowth.
    de Picciotto R ; Stormer HL; Yacoby A; Pfeiffer LN; Baldwin KW; West KW
    Phys Rev Lett; 2000 Aug; 85(8):1730-3. PubMed ID: 10970600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.
    Zhou C; Zhang XT; Zheng K; Chen PP; Matsumura S; Lu W; Zou J
    Nanoscale; 2019 Apr; 11(14):6859-6865. PubMed ID: 30912781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.
    Song XX; Liu D; Mosallanejad V; You J; Han TY; Chen DT; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2015 Oct; 7(40):16867-73. PubMed ID: 26412019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
    Pateras A; Park J; Ahn Y; Tilka JA; Holt MV; Reichl C; Wegscheider W; Baart TA; Dehollain JP; Mukhopadhyay U; Vandersypen LMK; Evans PG
    Nano Lett; 2018 May; 18(5):2780-2786. PubMed ID: 29664645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Beam Epitaxy of Layered Group III Metal Chalcogenides on GaAs(001) Substrates.
    Sorokin SV; Avdienko PS; Sedova IV; Kirilenko DA; Davydov VY; Komkov OS; Firsov DD; Ivanov SV
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleaved-edge-overgrowth nanogap electrodes.
    Luber SM; Bichler M; Abstreiter G; Tornow M
    Nanotechnology; 2011 Feb; 22(6):065301. PubMed ID: 21212484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh vacuum-compatible fabrication and electrical characterization systems for environmentally sensitive metal oxide semiconductor capacitors.
    Billman CA; Walker FJ
    Rev Sci Instrum; 2007 Jun; 78(6):065113. PubMed ID: 17614644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE.
    Mari RH; Shafi M; Aziz M; Khatab A; Taylor D; Henini M
    Nanoscale Res Lett; 2011 Feb; 6(1):180. PubMed ID: 21711687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures.
    Funk S; Royo M; Zardo I; Rudolph D; Morkötter S; Mayer B; Becker J; Bechtold A; Matich S; Döblinger M; Bichler M; Koblmüller G; Finley JJ; Bertoni A; Goldoni G; Abstreiter G
    Nano Lett; 2013; 13(12):6189-96. PubMed ID: 24274328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards defect-free 1-D GaAs/AlGaAs heterostructures based on GaAs nanomembranes.
    Tutuncuoglu G; de la Mata M; Deiana D; Potts H; Matteini F; Arbiol J; Fontcuberta i Morral A
    Nanoscale; 2015 Dec; 7(46):19453-60. PubMed ID: 26416625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel nanogap fabrication with nanometer size control using III-V semiconductor epitaxial technology.
    Fernández-Martínez I; González Y; Briones F
    Nanotechnology; 2008 Jul; 19(27):275302. PubMed ID: 21828698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incipient formation of an electron lattice in a weakly confined quantum wire.
    Hew WK; Thomas KJ; Pepper M; Farrer I; Anderson D; Jones GA; Ritchie DA
    Phys Rev Lett; 2009 Feb; 102(5):056804. PubMed ID: 19257536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-Dimensional In-Plane Heterostructures from 1D Mo
    Kim H; Johns JE; Yoo Y
    Small; 2020 Nov; 16(47):e2002849. PubMed ID: 33103352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Nanostructuring during Selective Area Epitaxy of Heterostructures with InGaAs QWs in the Ultra-Wide Windows.
    Shamakhov V; Nikolaev D; Slipchenko S; Fomin E; Smirnov A; Eliseyev I; Pikhtin N; Kop Ev P
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofabrication of gate-defined GaAs/AlGaAs lateral quantum dots.
    Bureau-Oxton C; Camirand Lemyre J; Pioro-Ladrière M
    J Vis Exp; 2013 Nov; (81):e50581. PubMed ID: 24300661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures.
    Heiss M; Gustafsson A; Conesa-Boj S; Peiró F; Morante JR; Abstreiter G; Arbiol J; Samuelson L; Fontcuberta i Morral A
    Nanotechnology; 2009 Feb; 20(7):075603. PubMed ID: 19417424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the structure of crescent-shaped GaAs quantum wires by combination of electron microscopy and photoluminescence spectroscopy.
    Matsuhata H; Wang XL; Ogura M
    J Electron Microsc (Tokyo); 2000; 49(2):349-55. PubMed ID: 11108058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and excitation density dependent photoluminescence of sputtering-induced GaAs/AlGaAs quantum dots.
    Wang Y; Yoon SF; Liu CY; Ngo CY; Ahn J
    Nanotechnology; 2008 Jan; 19(1):015602. PubMed ID: 21730537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs1-xBix/GaAs heterostructures.
    Mazur YI; Dorogan VG; de Souza LD; Fan D; Benamara M; Schmidbauer M; Ware ME; Tarasov GG; Yu SQ; Marques GE; Salamo GJ
    Nanotechnology; 2014 Jan; 25(3):035702. PubMed ID: 24346504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.