These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34741443)

  • 1. Polymers in Lithium-Sulfur Batteries.
    Zhang Q; Huang Q; Hao SM; Deng S; He Q; Lin Z; Yang Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103798. PubMed ID: 34741443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries.
    Wang F; Han Y; Feng X; Xu R; Li A; Wang T; Deng M; Tong C; Li J; Wei Z
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries.
    Kang J; Tian X; Yan C; Wei L; Gao L; Ju J; Zhao Y; Deng N; Cheng B; Kang W
    Small; 2022 Feb; 18(8):e2104469. PubMed ID: 35015928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective.
    Zhang M; Zhang X; Liu S; Hou W; Lu Y; Hou L; Luo Y; Liu Y; Yuan C
    ChemSusChem; 2024 May; ():e202400538. PubMed ID: 38763902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects.
    Song Z; Jiang W; Li B; Qu Y; Mao R; Jian X; Hu F
    Small; 2024 May; 20(19):e2308550. PubMed ID: 38282057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium-Sulfur Batteries.
    Tian J; Ji G; Han X; Xing F; Gao Q
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations.
    Kim A; Dash JK; Patel R
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-Selective Separators for Addressing the Lithium-Sulfur Battery Challenges.
    Zhao Q; Hao Z; Tang J; Xu X; Liu J; Jin Y; Zhang Q; Wang H
    ChemSusChem; 2021 Feb; 14(3):792-807. PubMed ID: 33258550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brominated flame retardants coated separators for high-safety lithium-sulfur batteries.
    Dong X; Zhu T; Liu G; Chen J; Li H; Sun J; Gu X; Zhang S
    J Colloid Interface Sci; 2023 Aug; 643():223-231. PubMed ID: 37060698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage.
    Ni W
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binder-free electrode architecture design for lithium-sulfur batteries: a review.
    Guo J; Liu J
    Nanoscale Adv; 2019 Jun; 1(6):2104-2122. PubMed ID: 36131955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green Production of Biomass-Derived Carbon Materials for High-Performance Lithium-Sulfur Batteries.
    Ma C; Zhang M; Ding Y; Xue Y; Wang H; Li P; Wu D
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Facile Immobilization Strategy for Soluble Phosphazene to Actualize Stable and Safe Lithium-Sulfur Batteries.
    Zhu T; Chen D; Liu G; Qi P; Gu X; Li H; Sun J; Zhang S
    Small; 2022 Sep; 18(38):e2203693. PubMed ID: 36007148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition Metal Phosphides: The Rising Star of Lithium-Sulfur Battery Cathode Host.
    Liu L; Yin X; Li W; Wang D; Duan J; Wang X; Zhang Y; Peng D; Zhang Y
    Small; 2024 Apr; 20(17):e2308564. PubMed ID: 38049201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances of Freestanding Cathodes for Li-S Batteries.
    Zhang P; Liu C; Yang Y; Zheng Y; Huo K
    Chem Asian J; 2021 May; 16(10):1172-1183. PubMed ID: 33749152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetable Oil-Based Waterborne Polyurethane as Eco-Binders for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Chen Z; Man L; Liu J; Lu L; Yang Z; Yang Y
    Macromol Rapid Commun; 2021 Oct; 42(19):e2100342. PubMed ID: 34347319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries.
    Chen C; Zhang M; Chen Q; Duan H; Liu S
    Chem Rec; 2023 Jun; 23(6):e202200278. PubMed ID: 36807712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-Of-The-Art and Future Challenges in High Energy Lithium-Selenium Batteries.
    Sun J; Du Z; Liu Y; Ai W; Wang K; Wang T; Du H; Liu L; Huang W
    Adv Mater; 2021 Mar; 33(10):e2003845. PubMed ID: 33491836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies.
    Zhu Q; Ye C; Mao D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries.
    Cha E; Patel M; Bhoyate S; Prasad V; Choi W
    Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.