These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34741846)

  • 1. Towards real time guide wire shape extraction in fluoroscopic sequences: A two phase deep learning scheme to extract sparse curvilinear structures.
    Chen K; Qin W; Xie Y; Zhou S
    Comput Med Imaging Graph; 2021 Dec; 94():101989. PubMed ID: 34741846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endpoint localization in guide wire tracking during endovascular interventions.
    Baert SA; van Walsum T; Niessen WJ
    Acad Radiol; 2003 Dec; 10(12):1424-32. PubMed ID: 14697010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray fluoroscopy noise modeling for filter design.
    Cesarelli M; Bifulco P; Cerciello T; Romano M; Paura L
    Int J Comput Assist Radiol Surg; 2013 Mar; 8(2):269-78. PubMed ID: 22718402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking technique of a micro guide wire in sequential fluorograms.
    Takemura A; Suzuki M; Harauchi H; Okumura Y
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Dec; 61(12):1623-31. PubMed ID: 16395237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guide-wire tracking during endovascular interventions.
    Baert SA; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Aug; 22(8):965-72. PubMed ID: 12906251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic coronary roadmapping via catheter tip tracking in X-ray fluoroscopy with deep learning based Bayesian filtering.
    Ma H; Smal I; Daemen J; Walsum TV
    Med Image Anal; 2020 Apr; 61():101634. PubMed ID: 31978856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy.
    Lin T; Cerviño LI; Tang X; Vasconcelos N; Jiang SB
    Phys Med Biol; 2009 Feb; 54(4):981-92. PubMed ID: 19147898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences.
    Pauly O; Heibel H; Navab N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):343-50. PubMed ID: 20879418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers.
    Cui Y; Dy JG; Sharp GC; Alexander B; Jiang SB
    Phys Med Biol; 2007 Oct; 52(20):6229-42. PubMed ID: 17921582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.
    Terunuma T; Tokui A; Sakae T
    Radiol Phys Technol; 2018 Mar; 11(1):43-53. PubMed ID: 29285686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging.
    van Walsum T; Baert SA; Niessen WJ
    IEEE Trans Med Imaging; 2005 May; 24(5):612-23. PubMed ID: 15889549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A key-point based real-time tracking of lung tumor in x-ray image sequence by using difference of Gaussians filtering and optical flow.
    Ichiji K; Yoshida Y; Homma N; Zhang X; Bukovsky I; Takai Y; Yoshizawa M
    Phys Med Biol; 2018 Sep; 63(18):185007. PubMed ID: 30109995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time noise reduction based on ground truth free deep learning for optical coherence tomography.
    Huang Y; Zhang N; Hao Q
    Biomed Opt Express; 2021 Apr; 12(4):2027-2040. PubMed ID: 33996214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guide-wire detecting using a modified cascade classifier in interventional radiology.
    Li Wang ; Xiao-Liang Xie ; Zhan-Jie Gao ; Gui-Bin Bian ; Zeng-Guang Hou
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1240-1243. PubMed ID: 28268549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic navigation for percutaneous guide-wire insertion: accuracy and efficiency compared to conventional fluoroscopic guidance.
    von Jako RA; Carrino JA; Yonemura KS; Noda GA; Zhue W; Blaskiewicz D; Rajue M; Groszmann DE; Weber G
    Neuroimage; 2009 Aug; 47 Suppl 2():T127-32. PubMed ID: 19427905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kernel-based method for markerless tumor tracking in kV fluoroscopic images.
    Zhang X; Homma N; Ichiji K; Abe M; Sugita N; Takai Y; Narita Y; Yoshizawa M
    Phys Med Biol; 2014 Sep; 59(17):4897-911. PubMed ID: 25098382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interventional tool tracking using discrete optimization.
    Heibel H; Glocker B; Groher M; Pfister M; Navab N
    IEEE Trans Med Imaging; 2013 Mar; 32(3):544-55. PubMed ID: 23232412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.