These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34741907)
41. Mechanical stress in plates for bridging reconstruction mandibular defects and purposes of double plate reinforcement. Hoefert S; Taier R J Craniomaxillofac Surg; 2018 May; 46(5):785-794. PubMed ID: 29567342 [TBL] [Abstract][Full Text] [Related]
42. Comparative evaluation of a patient-specific customised plate designs and screws for partial mandibular reconstruction. Dutta A; Mukherjee K; Seesala VS; Dutta K; Paul RR; Dhara S; Gupta S Med Eng Phys; 2023 Jan; 111():103941. PubMed ID: 36792242 [TBL] [Abstract][Full Text] [Related]
43. Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. Lovald ST; Wagner JD; Baack B J Oral Maxillofac Surg; 2009 May; 67(5):973-85. PubMed ID: 19375006 [TBL] [Abstract][Full Text] [Related]
44. Mechanical design optimization of bioabsorbable fixation devices for bone fractures. Lovald ST; Khraishi T; Wagner J; Baack B J Craniofac Surg; 2009 Mar; 20(2):389-98. PubMed ID: 19242363 [TBL] [Abstract][Full Text] [Related]
45. Biomechanical evaluation of caudally and buccally screwed customised reconstruction plates for lateral segmental defects of mandible. Demir E; Yalçın G; Kalaycı A; Sağlam H Br J Oral Maxillofac Surg; 2021 Oct; 59(8):928-934. PubMed ID: 34454776 [TBL] [Abstract][Full Text] [Related]
46. Biomechanical evaluation of different angle-stable locking plate systems for mandibular surgery. Lieger O; Schaller B; Bürki A; Büchler P J Craniomaxillofac Surg; 2015 Oct; 43(8):1589-94. PubMed ID: 26297419 [TBL] [Abstract][Full Text] [Related]
47. Fixation of mandibular angle fractures: in vitro biomechanical assessments and computer-based studies. Chrcanovic BR Oral Maxillofac Surg; 2013 Dec; 17(4):251-68. PubMed ID: 23064805 [TBL] [Abstract][Full Text] [Related]
48. Assessment of the Biomechanical Performance of 5 Plating Techniques in Fixation of Mandibular Subcondylar Fracture Using Finite Element Analysis. Darwich MA; Albogha MH; Abdelmajeed A; Darwich K J Oral Maxillofac Surg; 2016 Apr; 74(4):794.e1-8. PubMed ID: 26706490 [TBL] [Abstract][Full Text] [Related]
49. Comparison of locking and non-locking reconstruction plate-screw system in lateral mandibular defects by finite element analysis. Muftuoglu G; Bayram B; Aydin P J Stomatol Oral Maxillofac Surg; 2021 Sep; 122(4):e65-e69. PubMed ID: 33161169 [TBL] [Abstract][Full Text] [Related]
50. "A" shape plate for open rigid internal fixation of mandible condyle neck fracture. Kozakiewicz M; Swiniarski J J Craniomaxillofac Surg; 2014 Sep; 42(6):730-7. PubMed ID: 24359864 [TBL] [Abstract][Full Text] [Related]
51. Mandibular reconstruction--biomechanical strength analysis (FEM) based on a retrospective clinical analysis of selected patients. Jędrusik-Pawłowska M; Kromka-Szydek M; Katra M; Niedzielska I Acta Bioeng Biomech; 2013; 15(2):23-31. PubMed ID: 23952333 [TBL] [Abstract][Full Text] [Related]
52. Biomechanical Analysis of Implanted Clavicle Hook Plates With Different Implant Depths and Materials in the Acromioclavicular Joint: A Finite Element Analysis Study. Lee CH; Shih CM; Huang KC; Chen KH; Hung LK; Su KC Artif Organs; 2016 Nov; 40(11):1062-1070. PubMed ID: 26814438 [TBL] [Abstract][Full Text] [Related]
54. [Three-dimensional finite element analysis of mandibular bilateral sagitta1 split ramus osteotomy with rigid internal fixation]. Yin HW; Lin N; Guan J; Zhang GL Shanghai Kou Qiang Yi Xue; 2012 Apr; 21(2):194-8. PubMed ID: 22610332 [TBL] [Abstract][Full Text] [Related]
55. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis. Pauchard Y; Ivanov TG; McErlain DD; Milner JS; Giffin JR; Birmingham TB; Holdsworth DW J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25363041 [TBL] [Abstract][Full Text] [Related]
56. Biomechanical Analysis of a Novel Intercalary Prosthesis for Humeral Diaphyseal Segmental Defect Reconstruction. Zhao LM; Tian DM; Wei Y; Zhang JH; Di ZL; He ZY; Hu YC Orthop Surg; 2018 Feb; 10(1):23-31. PubMed ID: 29484857 [TBL] [Abstract][Full Text] [Related]
57. Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflow: A cadaveric and retrospective case study. van Kootwijk A; Jonker BP; Wolvius EB; Saldivar MC; Leeflang MA; Zhou J; Tümer N; Mirzaali MJ; Zadpoor AA J Mech Behav Biomed Mater; 2023 Oct; 146():106097. PubMed ID: 37678107 [TBL] [Abstract][Full Text] [Related]
58. Finite element analysis of stress distribution on reconstructed mandibular models for autogenous bone grafts. Kucukguven MB; Akkocaoğlu M Technol Health Care; 2020; 28(3):249-258. PubMed ID: 31594270 [TBL] [Abstract][Full Text] [Related]
59. Bridging Plate Development for Treatment of Segmental Bone Defects of the Canine Mandible: Mechanical Tests and Finite Element Method. de Freitas EP; Rahal SC; Shimano AC; da Silva JV; Noritomi PY; El-Warrak AO; Melchert A J Vet Dent; 2016 Mar; 33(1):18-25. PubMed ID: 27487652 [TBL] [Abstract][Full Text] [Related]
60. Biomechanical Testing of Additive Manufactured Proximal Humerus Fracture Fixation Plates. Tilton M; Armstrong A; Sanville J; Chin M; Hast MW; Lewis GS; Manogharan GP Ann Biomed Eng; 2020 Jan; 48(1):463-476. PubMed ID: 31555983 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]