BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34741969)

  • 1. A portable kit based on thiol-ene Michael addition for acrylamide detection in thermally processed foods.
    Zhuang YT; Ma L; Huang H; Han L; Wang L; Zhang Y
    Food Chem; 2022 Mar; 373(Pt B):131465. PubMed ID: 34741969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition.
    Hu Q; Fu Y; Xu X; Qiao Z; Wang R; Zhang Y; Li Y
    Analyst; 2016 Feb; 141(3):1136-43. PubMed ID: 26699696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A smartphone-assisted ultrasensitive detection of acrylamide in thermally processed snacks using CQD@Au NP integrated FRET sensor.
    Pattnayak BC; Mohapatra S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():122009. PubMed ID: 36279796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide.
    Wei S; Li L; Gou L; Wu L; Hou X
    Food Chem; 2023 Dec; 429():136991. PubMed ID: 37523913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition.
    Rong Y; Ali S; Ouyang Q; Wang L; Wang B; Chen Q
    Food Chem; 2021 Jul; 351():129215. PubMed ID: 33639428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols.
    Chang CC; Hsu TL; Chen CP; Chen CY
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32882936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ratiometric fluorescent "off-on" sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin.
    Cheng B; Xia X; Han Z; Yu H; Xie Y; Guo Y; Yao W; Qian H; Cheng Y
    Food Chem; 2024 Mar; 437(Pt 1):137878. PubMed ID: 37913709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A portable colorimetric sensing platform for rapid and sensitive quantification of dichlorvos pesticide based on Fe-Mn bimetallic oxide nanozyme-participated highly efficient chromogenic catalysis.
    Liu SG; Wang H; Zhao Q; Gao W; Shi X; Liu Z
    Anal Chim Acta; 2024 Mar; 1292():342243. PubMed ID: 38309847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric determination of cysteine based on inhibition of GSH-Au/Pt NCs as peroxidase mimic.
    Li JJ; Qiao D; Yang SZ; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119257. PubMed ID: 33296750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Cyclodextrin coated porous Pd@Au nanostructures with enhanced peroxidase-like activity for colorimetric and paper-based determination of glucose.
    Li F; Hu Y; Zhao A; Xi Y; Li Z; He J
    Mikrochim Acta; 2020 Jul; 187(8):425. PubMed ID: 32623601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional MoS
    Ma L; Zhu J; Wu C; Li D; Tang X; Zhang Y; An C
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119886. PubMed ID: 33991816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric and visual determination of acrylamide via acrylamide-mediated polymerization of acrylamide-functionalized gold nanoparticles.
    Shi X; Lu D; Wang Z; Zhang D; Gao W; Zhang C; Deng J; Guo S
    Mikrochim Acta; 2018 Oct; 185(11):522. PubMed ID: 30368605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetry /SERS dual-sensor of H
    Liu Q; Tang P; Xing X; Cheng W; Liu S; Lu X; Zhong L
    Talanta; 2022 Apr; 240():123118. PubMed ID: 34942473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay.
    An P; Xue X; Rao H; Wang J; Gao M; Wang H; Luo M; Liu X; Xue Z; Lu X
    Anal Chim Acta; 2020 Aug; 1125():114-127. PubMed ID: 32674757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of acrylamide in food based on MIL-glucose oxidase cascade colorimetric aptasensor.
    Guo K; Lin X; Duan N; Lu C; Wang Z; Wu S
    Anal Chim Acta; 2024 Feb; 1288():342150. PubMed ID: 38220284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles.
    Xie ZJ; Bao XY; Peng CF
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30111699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface.
    Wang L; Zhu L; Yu Q; Chen S; Cui Y; Sun H; Gao D; Lan X; Yang Q; Xiao H
    J Biomater Sci Polym Ed; 2018 Dec; 29(18):2267-2280. PubMed ID: 30382000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature modulating the peroxidase-mimic activity of poly(N-isopropyl acrylamide) protected gold nanoparticles for colorimetric detection of glutathione.
    Cheng C; Qiao J; Zhang H; Zhao Z; Qi L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121516. PubMed ID: 35724590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle-gold nanocluster nanocomposites and oxidized 3,3',5,5'-tetramethylbenzidine.
    Zhang G; Xiang M; Kong RM; Qu F
    Analyst; 2020 Sep; 145(19):6254-6261. PubMed ID: 32985630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.