BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34742202)

  • 1. Capacitive energy storage in single-file pores: Exactly solvable models and simulations.
    Verkholyak T; Kuzmak A; Kondrat S
    J Chem Phys; 2021 Nov; 155(17):174112. PubMed ID: 34742202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-file charge storage in conducting nanopores.
    Lee AA; Kondrat S; Kornyshev AA
    Phys Rev Lett; 2014 Jul; 113(4):048701. PubMed ID: 25105658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquids in conducting nanoslits: how important is the range of the screened electrostatic interactions?
    Groda Y; Dudka M; Oshanin G; Kornyshev AA; Kondrat S
    J Phys Condens Matter; 2022 May; 34(26):. PubMed ID: 35358962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice model of ionic liquid confined by metal electrodes.
    Girotto M; Malossi RM; Dos Santos AP; Levin Y
    J Chem Phys; 2018 May; 148(19):193829. PubMed ID: 30307233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ising models of charge storage in multifile metallic nanopores.
    Zaboronsky AO; Kornyshev AA
    J Phys Condens Matter; 2020 Jun; 32(27):275201. PubMed ID: 32254047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage.
    Kondrat S; Vasilyev OA; Kornyshev AA
    J Phys Chem Lett; 2019 Aug; 10(16):4523-4527. PubMed ID: 31318564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior.
    Dudka M; Kondrat S; BĂ©nichou O; Kornyshev AA; Oshanin G
    J Chem Phys; 2019 Nov; 151(18):184105. PubMed ID: 31731872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations.
    Bossa GV; Caetano DLZ; de Carvalho SJ; Bohinc K; May S
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):113. PubMed ID: 30259300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The simplest model of charge storage in single file metallic nanopores.
    Kornyshev AA
    Faraday Discuss; 2013; 164():117-33. PubMed ID: 24466661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superionic Liquids in Conducting Nanoslits: Insights from Theory and Simulations.
    Groda Y; Dudka M; Kornyshev AA; Oshanin G; Kondrat S
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):4968-4976. PubMed ID: 33841607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
    Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D
    J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations.
    Caetano DLZ; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2017 Sep; 19(35):23971-23981. PubMed ID: 28831474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size.
    Henrique F; Zuk PJ; Gupta A
    Soft Matter; 2021 Dec; 18(1):198-213. PubMed ID: 34870312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charging dynamics of supercapacitors with narrow cylindrical nanopores.
    Lee AA; Kondrat S; Oshanin G; Kornyshev AA
    Nanotechnology; 2014 Aug; 25(31):315401. PubMed ID: 25026503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ion hydration for the differential capacitance of an electric double layer.
    Caetano DL; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2016 Oct; 18(40):27796-27807. PubMed ID: 27711476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating charging dynamics in subnanometre pores.
    Kondrat S; Wu P; Qiao R; Kornyshev AA
    Nat Mater; 2014 Apr; 13(4):387-93. PubMed ID: 24651430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex capacitance scaling in ionic liquids-filled nanopores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    ACS Nano; 2011 Nov; 5(11):9044-51. PubMed ID: 22017626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.