These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34742202)

  • 21. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S; Georgi N; Fedorov MV; Kornyshev AA
    Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to speed up ion transport in nanopores.
    Breitsprecher K; Janssen M; Srimuk P; Mehdi BL; Presser V; Holm C; Kondrat S
    Nat Commun; 2020 Nov; 11(1):6085. PubMed ID: 33257681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale Pore Network Boosts Capacitance of Carbon Electrodes for Ultrafast Charging.
    Zhang F; Liu T; Li M; Yu M; Luo Y; Tong Y; Li Y
    Nano Lett; 2017 May; 17(5):3097-3104. PubMed ID: 28394622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Measurement of the Differential Capacitance of Solvent-Free and Dilute Ionic Liquids.
    Jitvisate M; Seddon JRT
    J Phys Chem Lett; 2018 Jan; 9(1):126-131. PubMed ID: 29256620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes.
    Bi S; Banda H; Chen M; Niu L; Chen M; Wu T; Wang J; Wang R; Feng J; Chen T; Dincă M; Kornyshev AA; Feng G
    Nat Mater; 2020 May; 19(5):552-558. PubMed ID: 32015536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids.
    Yang J; Ding Y; Lian C; Ying S; Liu H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores.
    Mo T; Bi S; Zhang Y; Presser V; Wang X; Gogotsi Y; Feng G
    ACS Nano; 2020 Feb; 14(2):2395-2403. PubMed ID: 31999427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge Me Slowly, I Am in a Hurry: Optimizing Charge-Discharge Cycles in Nanoporous Supercapacitors.
    Breitsprecher K; Holm C; Kondrat S
    ACS Nano; 2018 Oct; 12(10):9733-9741. PubMed ID: 30088913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the capacitance of narrow nanotubes.
    Schmickler W; Henderson D
    Phys Chem Chem Phys; 2017 Aug; 19(31):20393-20400. PubMed ID: 28726901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores.
    Wu P; Huang J; Meunier V; Sumpter BG; Qiao R
    J Phys Chem Lett; 2012 Jul; 3(13):1732-7. PubMed ID: 26291851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model.
    Heimböckel R; Hoffmann F; Fröba M
    Phys Chem Chem Phys; 2019 Feb; 21(6):3122-3133. PubMed ID: 30675602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; Sokołowski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A network model to predict ionic transport in porous materials.
    Henrique F; Żuk PJ; Gupta A
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401656121. PubMed ID: 38787880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage.
    Su H; Huang H; Zhao S; Zhou Y; Xu S; Pan H; Gu B; Chu X; Deng W; Zhang H; Zhang H; Chen J; Yang W
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2773-2782. PubMed ID: 31867944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exact Results for the Boundary Energy of One-Dimensional Bosons.
    Reichert B; Astrakharchik GE; Petković A; Ristivojevic Z
    Phys Rev Lett; 2019 Dec; 123(25):250602. PubMed ID: 31922773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.