These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34742215)

  • 1. Entropy-based active learning of graph neural network surrogate models for materials properties.
    Allotey J; Butler KT; Thiyagalingam J
    J Chem Phys; 2021 Nov; 155(17):174116. PubMed ID: 34742215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Learning for Node Classification: An Evaluation.
    Madhawa K; Murata T
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules.
    Choi JY; Zhang P; Mehta K; Blanchard A; Lupo Pasini M
    J Cheminform; 2022 Oct; 14(1):70. PubMed ID: 36253845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative confidence relabeling with deep ConvNets for organ segmentation with partial labels.
    Petit O; Thome N; Soler L
    Comput Med Imaging Graph; 2021 Jul; 91():101938. PubMed ID: 34153879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not from Scratch: Predicting Thermophysical Properties through Model-Based Transfer Learning Using Graph Convolutional Networks.
    Hormazabal RS; Kang JW; Park K; Yang DR
    J Chem Inf Model; 2022 Nov; 62(22):5411-5424. PubMed ID: 36315416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification.
    Hu J; Cao L; Li T; Dong S; Li P
    BMC Bioinformatics; 2021 Jul; 22(1):379. PubMed ID: 34294047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Small Molecule pK
    Mayr F; Wieder M; Wieder O; Langer T
    Front Chem; 2022; 10():866585. PubMed ID: 35721000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.
    Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S
    BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast uncertainty estimates in deep learning interatomic potentials.
    Zhu A; Batzner S; Musaelian A; Kozinsky B
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty-aware prediction of chemical reaction yields with graph neural networks.
    Kwon Y; Lee D; Choi YS; Kang S
    J Cheminform; 2022 Jan; 14(1):2. PubMed ID: 35012654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrapolation of Ventricular Activation Times From Sparse Electroanatomical Data Using Graph Convolutional Neural Networks.
    Meister F; Passerini T; Audigier C; Lluch È; Mihalef V; Ashikaga H; Maier A; Halperin H; Mansi T
    Front Physiol; 2021; 12():694869. PubMed ID: 34733172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes.
    Ahmad Z; Xie T; Maheshwari C; Grossman JC; Viswanathan V
    ACS Cent Sci; 2018 Aug; 4(8):996-1006. PubMed ID: 30159396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning.
    Zhang Y; Lee AA
    Chem Sci; 2019 Sep; 10(35):8154-8163. PubMed ID: 31857882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATARI: A Graph Convolutional Neural Network Approach for Performance Prediction in Next-Generation WLANs.
    Soto P; Camelo M; Mets K; Wilhelmi F; Góez D; Fletscher LA; Gaviria N; Hellinckx P; Botero JF; Latré S
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models.
    Jiang D; Wu Z; Hsieh CY; Chen G; Liao B; Wang Z; Shen C; Cao D; Wu J; Hou T
    J Cheminform; 2021 Feb; 13(1):12. PubMed ID: 33597034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification.
    Ryu S; Kwon Y; Kim WY
    Chem Sci; 2019 Sep; 10(36):8438-8446. PubMed ID: 31803423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.