These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 34742253)
1. Variability in ITS1 and ITS2 sequences of historic herbaria and extant (fresh) Phalaris species (Poaceae). Graper AL; Noyszewski AK; Anderson NO; Smith AG BMC Plant Biol; 2021 Nov; 21(1):515. PubMed ID: 34742253 [TBL] [Abstract][Full Text] [Related]
3. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae). Barth S; Jankowska MJ; Hodkinson TR; Vellani T; Klaas M BMC Res Notes; 2016 Mar; 9():184. PubMed ID: 27005474 [TBL] [Abstract][Full Text] [Related]
4. Canary grasses (Phalaris, Poaceae): biogeography, molecular dating and the role of floret structure in dispersal. Voshell SM; Hilu KW Mol Ecol; 2014 Jan; 23(1):212-24. PubMed ID: 24206057 [TBL] [Abstract][Full Text] [Related]
5. The Complete Chloroplast Genome Sequencing and Comparative Analysis of Reed Canary Grass ( Xiong Y; Xiong Y; Jia S; Ma X Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32545897 [TBL] [Abstract][Full Text] [Related]
6. A reassessment of the genome size-invasiveness relationship in reed canarygrass (Phalaris arundinacea). Martinez MA; Baack EJ; Hovick SM; Whitney KD Ann Bot; 2018 Jun; 121(7):1309-1318. PubMed ID: 29534147 [TBL] [Abstract][Full Text] [Related]
7. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae). He Z; Bentley LP; Holaday AS Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081 [TBL] [Abstract][Full Text] [Related]
8. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions. Wang X; He Y; Zhang C; Tian YA; Lei X; Li D; Bai S; Deng X; Lin H J Plant Physiol; 2021 Jun; 261():153428. PubMed ID: 33957505 [TBL] [Abstract][Full Text] [Related]
9. A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Ciarmiello LF; Piccirillo P; Pontecorvo G; De Luca A; Kafantaris I; Woodrow P Mol Biol Rep; 2011 Feb; 38(2):1237-49. PubMed ID: 20577817 [TBL] [Abstract][Full Text] [Related]
10. Physiological and molecular responses of Phalaris arundinacea under salt stress on the Tibet plateau. Wang X; Lei X; Zhang C; He P; Zhong J; Bai S; Li D; Deng X; Lin H J Plant Physiol; 2022 Jul; 274():153715. PubMed ID: 35609373 [TBL] [Abstract][Full Text] [Related]
11. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Lavergne S; Molofsky J Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3883-8. PubMed ID: 17360447 [TBL] [Abstract][Full Text] [Related]
12. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Chen X; Liao B; Song J; Pang X; Han J; Chen S Gene; 2013 Nov; 530(1):39-43. PubMed ID: 23933277 [TBL] [Abstract][Full Text] [Related]
13. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability. Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333 [TBL] [Abstract][Full Text] [Related]
14. Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Li X; Paech N; Nield J; Hayman D; Langridge P Plant Mol Biol; 1997 May; 34(2):223-32. PubMed ID: 9207838 [TBL] [Abstract][Full Text] [Related]
15. Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species. Arbefeville S; Harris A; Ferrieri P J Microbiol Methods; 2017 Sep; 140():40-46. PubMed ID: 28647582 [TBL] [Abstract][Full Text] [Related]
16. Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. Kong F; Tong Z; Chen X; Sorrell T; Wang B; Wu Q; Ellis D; Chen S J Clin Microbiol; 2008 Apr; 46(4):1192-9. PubMed ID: 18234865 [TBL] [Abstract][Full Text] [Related]
17. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum. Zhang X; Xu Z; Pei H; Chen Z; Tan X; Hu J; Yang B; Sun J PLoS One; 2017; 12(1):e0169042. PubMed ID: 28056060 [TBL] [Abstract][Full Text] [Related]
18. ITS1: a DNA barcode better than ITS2 in eukaryotes? Wang XC; Liu C; Huang L; Bengtsson-Palme J; Chen H; Zhang JH; Cai D; Li JQ Mol Ecol Resour; 2015 May; 15(3):573-86. PubMed ID: 25187125 [TBL] [Abstract][Full Text] [Related]
19. Analysis of ITS1 and ITS2 sequences in Ensis razor shells: suitability as molecular markers at the population and species levels, and evolution of these ribosomal DNA spacers. Vierna J; Martínez-Lage A; González-Tizón AM Genome; 2010 Jan; 53(1):23-34. PubMed ID: 20130746 [TBL] [Abstract][Full Text] [Related]