BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 34742407)

  • 1. Cellulose nanocrystals: Fundamentals and biomedical applications.
    Mali P; Sherje AP
    Carbohydr Polym; 2022 Jan; 275():118668. PubMed ID: 34742407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications.
    Sunasee R; Hemraz UD; Ckless K
    Expert Opin Drug Deliv; 2016 Sep; 13(9):1243-56. PubMed ID: 27110733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications.
    Pachuau LS
    Mini Rev Med Chem; 2015; 15(7):543-52. PubMed ID: 25877601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Alga
    Mihhels K; Yousefi N; Blomster J; Solala I; Solhi L; Kontturi E
    Biomacromolecules; 2023 Nov; 24(11):4672-4679. PubMed ID: 37729475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose in biomedical and biosensing applications: A review.
    Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H
    Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer.
    Gong X; Wang Y; Chen L
    Carbohydr Polym; 2017 Aug; 169():295-303. PubMed ID: 28504148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses.
    Claro AM; Dias IKR; Fontes ML; Colturato VMM; Lima LR; Sávio LB; Berto GL; Arantes V; Barud HDS
    Carbohydr Res; 2024 May; 539():109104. PubMed ID: 38643706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of cellulose nanocrystals for advanced applications.
    Tang J; Sisler J; Grishkewich N; Tam KC
    J Colloid Interface Sci; 2017 May; 494():397-409. PubMed ID: 28187295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Developments in Shape-Controlled Synthesis of Cellulose Nanocrystals.
    Pachuau L; Nath R
    Mini Rev Med Chem; 2023; 23(13):1360-1375. PubMed ID: 36043712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films.
    Mujtaba M; Salaberria AM; Andres MA; Kaya M; Gunyakti A; Labidi J
    Int J Biol Macromol; 2017 Nov; 104(Pt A):944-952. PubMed ID: 28684354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Biomedical Application of Nanocellulose-Based Materials: A Review.
    Yuan Q; Bian J; Ma MG
    Curr Med Chem; 2021; 28(40):8275-8295. PubMed ID: 33256574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications.
    Khalid MY; Arif ZU; Noroozi R; Hossain M; Ramakrishna S; Umer R
    Int J Biol Macromol; 2023 Nov; 251():126287. PubMed ID: 37573913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization.
    Rana AK; Frollini E; Thakur VK
    Int J Biol Macromol; 2021 Jul; 182():1554-1581. PubMed ID: 34029581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li A; Li S; Liu M; Luo S; Zhang D
    Int J Biol Macromol; 2019 May; 129():878-886. PubMed ID: 30735776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers.
    Ureña-Benavides EE; Brown PJ; Kitchens CL
    Langmuir; 2010 Sep; 26(17):14263-70. PubMed ID: 20712357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.