These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34742422)

  • 1. Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement.
    Shu L; Zhang XF; Wang Z; Yao J
    Carbohydr Polym; 2022 Jan; 275():118695. PubMed ID: 34742422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor.
    Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics that Afford the Solubility of Cellulose.
    Sen S; Losey BP; Gordon EE; Argyropoulos DS; Martin JD
    J Phys Chem B; 2016 Feb; 120(6):1134-41. PubMed ID: 26800761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent.
    Soheilmoghaddam M; Wahit MU; Tuck Whye W; Ibrahim Akos N; Heidar Pour R; Ali Yussuf A
    Carbohydr Polym; 2014 Jun; 106():326-34. PubMed ID: 24721086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved thermal stability of regenerated cellulose films from corn (Zea mays) stalk pith using facile preparation with low-concentration zinc chloride dissolving.
    Zhang H; Chen K; Gao X; Han Q; Peng L
    Carbohydr Polym; 2019 Aug; 217():190-198. PubMed ID: 31079676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.
    Pang J; Wu M; Zhang Q; Tan X; Xu F; Zhang X; Sun R
    Carbohydr Polym; 2015 May; 121():71-8. PubMed ID: 25659673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile route to prepare cellulose-based films.
    Xu Q; Chen C; Rosswurm K; Yao T; Janaswamy S
    Carbohydr Polym; 2016 Sep; 149():274-81. PubMed ID: 27261751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films.
    Abdulkhani A; Marvast EH; Ashori A; Karimi AN
    Carbohydr Polym; 2013 Jun; 95(1):57-63. PubMed ID: 23618239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy to reduce the viscosity of cellulose-ionic liquid solution assisted by transition metal ions.
    Fan Z; Chen J; Sun S; Zhou Q
    Carbohydr Polym; 2021 Mar; 256():117535. PubMed ID: 33483051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions.
    Li X; Li H; Wang X; Xu D; You T; Wu Y; Xu F
    Int J Biol Macromol; 2021 Jul; 183():760-771. PubMed ID: 33932418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of cellulose based aerogel utilizing waste denim-A Morphology study.
    Zeng B; Wang X; Byrne N
    Carbohydr Polym; 2019 Feb; 205():1-7. PubMed ID: 30446084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.
    El Nemr A; Ragab S; El Sikaily A
    Carbohydr Polym; 2016 Oct; 151():1058-1067. PubMed ID: 27474655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels.
    Kassem I; Kassab Z; Khouloud M; Sehaqui H; Bouhfid R; Jacquemin J; Qaiss AEK; El Achaby M
    Int J Biol Macromol; 2020 Nov; 162():136-149. PubMed ID: 32561278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid.
    Wu RL; Wang XL; Li F; Li HZ; Wang YZ
    Bioresour Technol; 2009 May; 100(9):2569-74. PubMed ID: 19138843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignocellulose hydrogels fabricated from corncob residues through a green solvent system.
    Zheng T; Yang L; Li J; Cao M; Shu L; Yang L; Zhang XF; Yao J
    Int J Biol Macromol; 2022 Sep; 217():428-434. PubMed ID: 35843394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic liquids and their interaction with cellulose.
    Pinkert A; Marsh KN; Pang S; Staiger MP
    Chem Rev; 2009 Dec; 109(12):6712-28. PubMed ID: 19757807
    [No Abstract]   [Full Text] [Related]  

  • 18. A biaxially stretched cellulose film prepared from ionic liquid solution.
    Wan J; Diao H; Yu J; Song G; Zhang J
    Carbohydr Polym; 2021 May; 260():117816. PubMed ID: 33712160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.
    Soheilmoghaddam M; Wahit MU
    Int J Biol Macromol; 2013 Jul; 58():133-9. PubMed ID: 23567285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable Dual-Network Cellulosic Composite Bioplastic Metafilm for Plastic Substitute.
    Wang D; Shi S; Mao Y; Lei L; Fu S; Hu J
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202310995. PubMed ID: 37899667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.