These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34742708)

  • 1. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents.
    Hemdan B; Garlapati VK; Sharma S; Bhadra S; Maddirala S; K M V; Motru V; Goswami P; Sevda S; Aminabhavi TM
    Environ Res; 2022 Mar; 204(Pt D):112346. PubMed ID: 34742708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective.
    Wang S; Adekunle A; Raghavan V
    J Environ Manage; 2022 Sep; 317():115333. PubMed ID: 35617867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity.
    Sravan JS; Nancharaiah YV; Lens PNL; Mohan SV
    J Hazard Mater; 2020 Nov; 399():122843. PubMed ID: 32937693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metals removal and recovery in bioelectrochemical systems: A review.
    Nancharaiah YV; Venkata Mohan S; Lens PN
    Bioresour Technol; 2015 Nov; 195():102-14. PubMed ID: 26116446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review.
    Ho NAD; Babel S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63480-63494. PubMed ID: 32666459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives.
    Iskander SM; Brazil B; Novak JT; He Z
    Bioresour Technol; 2016 Feb; 201():347-54. PubMed ID: 26681364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrients removal and recovery in bioelectrochemical systems: a review.
    Kelly PT; He Z
    Bioresour Technol; 2014 Feb; 153():351-60. PubMed ID: 24388692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectrochemical metal recovery from wastewater: a review.
    Wang H; Ren ZJ
    Water Res; 2014 Dec; 66():219-232. PubMed ID: 25216302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical system platform for sustainable environmental remediation and energy generation.
    Wang H; Luo H; Fallgren PH; Jin S; Ren ZJ
    Biotechnol Adv; 2015; 33(3-4):317-34. PubMed ID: 25886880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage.
    Pozo G; Pongy S; Keller J; Ledezma P; Freguia S
    Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives.
    Dattatraya Saratale G; Rajesh Banu J; Nastro RA; Kadier A; Ashokkumar V; Lay CH; Jung JH; Seung Shin H; Ganesh Saratale R; Chandrasekhar K
    Bioresour Technol; 2022 Sep; 359():127435. PubMed ID: 35680092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices.
    Jadhav DA; Chendake AD; Vinayak V; Atabani A; Ali Abdelkareem M; Chae KJ
    Bioresour Technol; 2022 Nov; 363():127935. PubMed ID: 36100187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review.
    Cabrera J; Irfan M; Dai Y; Zhang P; Zong Y; Liu X
    Chemosphere; 2021 Dec; 285():131428. PubMed ID: 34237499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment.
    Kong F; Wang A; Cheng H; Liang B
    Bioresour Technol; 2014 Jan; 151():332-9. PubMed ID: 24262842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications.
    Nobahar A; Carlier JD; Miguel MG; Costa MC
    Biometals; 2021 Aug; 34(4):761-793. PubMed ID: 33961184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrobenzene removal in bioelectrochemical systems.
    Mu Y; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2009 Nov; 43(22):8690-5. PubMed ID: 20028072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems.
    Yu YY; Zhai DD; Si RW; Sun JZ; Liu X; Yong YC
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects.
    Sevda S; Garlapati VK; Naha S; Sharma M; Ray SG; Sreekrishnan TR; Goswami P
    J Biosci Bioeng; 2020 Jun; 129(6):647-656. PubMed ID: 32044271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.