BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34742757)

  • 21. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion.
    Li CS; Cai RR
    Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization.
    Kanchanatip E; Prasertsung N; Thasnas N; Grisdanurak N; Wantala K
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90318-90327. PubMed ID: 36370310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative production of biochars from corn stalk and cow manure.
    Liu Z; Zhang Y; Liu Z
    Bioresour Technol; 2019 Nov; 291():121855. PubMed ID: 31357042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrothermal carbonization of cow dung with human urine as a solvent for hydrochar: An experimental and kinetic study.
    Gajera ZR; Mungray AA; Rene ER; Mungray AK
    J Environ Manage; 2023 Feb; 327():116854. PubMed ID: 36455439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal Carbonization of Sewage Sludge with Sawdust and Corn Stalk: Optimization of Process Parameters and Characterization of Hydrochar.
    Shakiba A; Aliasghar A; Moazeni K; Pazoki M
    Bioenergy Res; 2023 Jan; ():1-12. PubMed ID: 36619298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuel Characteristics and Removal of AAEMs in Hydrochars Derived from Sewage Sludge and Corn Straw.
    Guo S; Xiao W; Liu Z; Zhao D; Chen K; Zhao C; Li X; Li G
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water.
    Yek PNY; Liew RK; Wan Mahari WA; Peng W; Sonne C; Kong SH; Tabatabaei M; Aghbashlo M; Park YK; Lam SS
    Sci Total Environ; 2022 Aug; 833():154968. PubMed ID: 35367546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar.
    Sharma HB; Panigrahi S; Dubey BK
    Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature.
    Nzediegwu C; Arshad M; Ulah A; Naeth MA; Chang SX
    Bioresour Technol; 2021 Jan; 320(Pt A):124282. PubMed ID: 33120061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization.
    Zhang S; Sheng K; Yan W; Liu J; Shuang E; Yang M; Zhang X
    Chemosphere; 2021 Jan; 263():128093. PubMed ID: 33297089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrothermal carbonization of corncob for hydrochar production and its combustion reactivity in a blast furnace.
    An Q; Wang Q; Zhai J
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16653-16666. PubMed ID: 38319417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.
    Park KY; Lee K; Kim D
    Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microwave assisted and conventional hydrothermal treatment of waste seaweed: Comparison of hydrochar properties and energy efficiency.
    Soroush S; Ronsse F; Park J; Ghysels S; Wu D; Kim KW; Heynderickx PM
    Sci Total Environ; 2023 Jun; 878():163193. PubMed ID: 37003343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization.
    Lee J; Park KY
    Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogen migration in products during the microwave-assisted hydrothermal carbonization of spirulina platensis.
    Guo D; Wang Y; Gao Y; Lyu Y; Lin Y; Pan Y; Zhu L; Zhu Y
    Bioresour Technol; 2022 May; 351():126968. PubMed ID: 35276372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept.
    Sharma HB; Panigrahi S; Sarmah AK; Dubey BK
    Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis.
    Ma J; Luo H; Li Y; Liu Z; Li D; Gai C; Jiao W
    Bioresour Technol; 2019 Jun; 282():133-141. PubMed ID: 30852333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Chicken Manure Hydrochar.
    Hejna M; Świechowski K; Rasaq WA; Białowiec A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review.
    Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z
    Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.