These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34743251)

  • 21. Role of compressive sensing technique in dose reduction for chest computed tomography: a prospective blinded clinical study.
    Khawaja RD; Singh S; Lira D; Bippus R; Do S; Padole A; Pourjabbar S; Koehler T; Shepard JA; Kalra MK
    J Comput Assist Tomogr; 2014; 38(5):760-7. PubMed ID: 24834892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of Low-Dose CT Lung Cancer Screening Scan "Over-Range" Issue Using Machine Learning Methods.
    Huo D; Kiehn M; Scherzinger A
    J Digit Imaging; 2019 Dec; 32(6):931-938. PubMed ID: 31102064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of the scout view orientation on the radiation exposure and image quality in thoracic and abdominal CT.
    Suntharalingam S; Wetter A; Guberina N; Theysohn J; Ringelstein A; Schlosser T; Forsting M; Nassenstein K
    Eur Radiol; 2016 Nov; 26(11):4072-4079. PubMed ID: 26943131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting the pulmonary trunk in CT scout views using deep learning.
    Demircioğlu A; Stein MC; Kim MS; Geske H; Quinsten AS; Blex S; Umutlu L; Nassenstein K
    Sci Rep; 2021 May; 11(1):10215. PubMed ID: 33986402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation.
    Christner JA; Zavaletta VA; Eusemann CD; Walz-Flannigan AI; McCollough CH
    AJR Am J Roentgenol; 2010 Jan; 194(1):W49-55. PubMed ID: 20028890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography.
    Theocharopoulos N; Damilakis J; Perisinakis K; Gourtsoyiannis N
    Med Phys; 2007 Apr; 34(4):1139-52. PubMed ID: 17500445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline.
    Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH
    medRxiv; 2023 Mar; ():. PubMed ID: 36945519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A deep learning-based post-processing method for automated pulmonary lobe and airway trees segmentation using chest CT images in PET/CT.
    Xing H; Zhang X; Nie Y; Wang S; Wang T; Jing H; Li F
    Quant Imaging Med Surg; 2022 Oct; 12(10):4747-4757. PubMed ID: 36185049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep-Learning-Based Whole-Lung and Lung-Lesion Quantification Despite Inconsistent Ground Truth: Application to Computerized Tomography in SARS-CoV-2 Nonhuman Primate Models.
    Reza SMS; Chu WT; Homayounieh F; Blain M; Firouzabadi FD; Anari PY; Lee JH; Worwa G; Finch CL; Kuhn JH; Malayeri A; Crozier I; Wood BJ; Feuerstein IM; Solomon J
    Acad Radiol; 2023 Sep; 30(9):2037-2045. PubMed ID: 36966070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of vertical centering and scout direction on automatic tube voltage selection in chest CT: a preliminary phantom study on two different CT equipments.
    Kaasalainen T; Mäkelä T; Kortesniemi M
    Eur J Radiol Open; 2019; 6():24-32. PubMed ID: 30619916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep learning-based automatic image quality assessment method for respiratory phase on computed tomography chest images.
    Su J; Li M; Lin Y; Xiong L; Yuan C; Zhou Z; Yan K
    Quant Imaging Med Surg; 2024 Mar; 14(3):2240-2254. PubMed ID: 38545050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images.
    Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA
    Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully Automated Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: Validation with Intra- and Extra-Datasets.
    Park J; Yun J; Kim N; Park B; Cho Y; Park HJ; Song M; Lee M; Seo JB
    J Digit Imaging; 2020 Feb; 33(1):221-230. PubMed ID: 31152273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital.
    Kulkarni C; Sherkhane U; Jaiswar V; Mithun S; Mysore Siddu D; Rangarajan V; Dekker A; Traverso A; Jha A; Wee L
    BJR Open; 2024 Jan; 6(1):tzad008. PubMed ID: 38352184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning for Automatic Paraspinous Muscle Area and Attenuation Measures on Low-Dose Chest CT Scans.
    Barnard R; Tan J; Roller B; Chiles C; Weaver AA; Boutin RD; Kritchevsky SB; Lenchik L
    Acad Radiol; 2019 Dec; 26(12):1686-1694. PubMed ID: 31326311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis.
    Yousefirizi F; Klyuzhin IS; O JH; Harsini S; Tie X; Shiri I; Shin M; Lee C; Cho SY; Bradshaw TJ; Zaidi H; Bénard F; Sehn LH; Savage KJ; Steidl C; Uribe CF; Rahmim A
    Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):1937-1954. PubMed ID: 38326655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning.
    Yin Z; Yao Y; Montillo A; Wu M; Edic PM; Kalra M; De Man B
    Med Phys; 2015 May; 42(5):2730-9. PubMed ID: 25979071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images.
    Salehi M; Ardekani MA; Taramsari AB; Ghaffari H; Haghparast M
    Pol J Radiol; 2022; 87():e478-e486. PubMed ID: 36091652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.