BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34743285)

  • 41. Growth and amylase production by Aspergillus oryzae during solid state fermentation using banana waste as substrate.
    Ragunathan R; Swaminathan K
    J Environ Biol; 2005 Oct; 26(4):653-6. PubMed ID: 16459551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain improvement studies on Microbacterium foliorum GA2 for production of α-amylase in solid state fermentation: Biochemical characteristics and wash performance analysis at low temperatures.
    Roohi ; Kuddus M
    J Gen Appl Microbiol; 2018 Jan; 63(6):347-354. PubMed ID: 29142163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization.
    Singhania RR; Sukumaran RK; Pandey A
    Appl Biochem Biotechnol; 2007 Jul; 142(1):60-70. PubMed ID: 18025569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics and kinetics of thermophilic actinomycetes' amylase production on agro-wastes and its application for ethanol fermentation.
    El-Sayed MH; Gomaa AEF; Atta OM; Hassane AMA
    World J Microbiol Biotechnol; 2024 Jun; 40(8):255. PubMed ID: 38926189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced production of α-amylase by Penicillium chrysogenum in liquid culture by modifying the process parameters.
    Dar GH; Kamili AN; Nazir R; Bandh SA; Jan TR; Chishti MZ
    Microb Pathog; 2015 Nov; 88():10-5. PubMed ID: 26220910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium.
    El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA
    BMC Biotechnol; 2014 Apr; 14():29. PubMed ID: 24758479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation.
    Melnichuk N; Braia MJ; Anselmi PA; Meini MR; Romanini D
    Waste Manag; 2020 Apr; 106():155-161. PubMed ID: 32220823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic characterization of extracellular alpha-amylase from a derepressed mutant of Bacillus licheniformis.
    Ul-Haq I; Ashraf H; Ali S; Qadeer MA
    Appl Biochem Biotechnol; 2007; 141(2-3):251-64. PubMed ID: 18035646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties.
    Ademakinwa AN; Agunbiade MO; Ayinla ZA; Agboola FK
    Int J Biol Macromol; 2019 Nov; 140():833-841. PubMed ID: 31445154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus.
    Kunamneni A; Permaul K; Singh S
    J Biosci Bioeng; 2005 Aug; 100(2):168-71. PubMed ID: 16198259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions.
    Latifian M; Hamidi-Esfahani Z; Barzegar M
    Bioresour Technol; 2007 Dec; 98(18):3634-7. PubMed ID: 17207619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production and characterization of alpha-amylase from mango kernel by Fusarium solani NAIMCC-F-02956 using submerged fermentation.
    Kumar D; Yadav KK; Muthukumar M; Garg N
    J Environ Biol; 2013 Nov; 34(6):1053-8. PubMed ID: 24555336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of temperature, moisture content and inoculum size in solid state fermentation to enhance mannanase production by Aspergillus terreus SUK-1 using RSM.
    Rashid JI; Samat N; Mohtar W; Yusoff W
    Pak J Biol Sci; 2011 May; 14(9):533-9. PubMed ID: 22032082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.
    Singh S; Singh S; Bali V; Sharma L; Mangla J
    Biomed Res Int; 2014; 2014():215748. PubMed ID: 24527439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii.
    Acourene S; Ammouche A
    J Ind Microbiol Biotechnol; 2012 May; 39(5):759-66. PubMed ID: 22193823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of alpha-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation.
    Bogar B; Szakacs G; Tengerdy RP; Linden JC; Pandey A
    Appl Biochem Biotechnol; 2002; 102-103(1-6):453-61. PubMed ID: 12396145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partial purification and characterization of amylase enzyme under solid state fermentation from
    Tallapragada P; Dikshit R; Jadhav A; Sarah U
    J Genet Eng Biotechnol; 2017 Jun; 15(1):95-101. PubMed ID: 30647646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei.
    Maurya DP; Singh D; Pratap D; Maurya JP
    J Environ Biol; 2012 Jan; 33(1):5-8. PubMed ID: 23033636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii.
    Michelin M; Silva TM; Benassi VM; Peixoto-Nogueira SC; Moraes LA; Leão JM; Jorge JA; Terenzi HF; Polizeli Mde L
    Carbohydr Res; 2010 Nov; 345(16):2348-53. PubMed ID: 20850111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.