These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34743365)

  • 21. Ectopic DICER-LIKE1 expression in P1/HC-Pro Arabidopsis rescues phenotypic anomalies but not defects in microRNA and silencing pathways.
    Mlotshwa S; Schauer SE; Smith TH; Mallory AC; Herr JM; Roth B; Merchant DS; Ray A; Bowman LH; Vance VB
    Plant Cell; 2005 Nov; 17(11):2873-85. PubMed ID: 16214897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals.
    Lee S; Jee D; Srivastava S; Yang A; Ramidi A; Shang R; Bortolamiol-Becet D; Pfeffer S; Gu S; Wen J; Lai EC
    Cell Rep; 2023 Feb; 42(2):112111. PubMed ID: 36800291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and Identification of Gene-Specific MicroRNAs.
    Lin SL; Chang DC; Ying SY
    Methods Mol Biol; 2018; 1733():173-180. PubMed ID: 29435932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana.
    Wang J; Chen S; Jiang N; Li N; Wang X; Li Z; Li X; Liu H; Li L; Yang Y; Ni T; Yu C; Ma J; Zheng B; Ren G
    Nucleic Acids Res; 2019 Sep; 47(15):7886-7900. PubMed ID: 31216029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules.
    Tworak A; Urbanowicz A; Podkowinski J; Kurzynska-Kokorniak A; Koralewska N; Figlerowicz M
    Plant Cell Rep; 2016 May; 35(5):1043-52. PubMed ID: 26825594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Argonaute-associated short introns are a novel class of gene regulators.
    Hansen TB; Venø MT; Jensen TI; Schaefer A; Damgaard CK; Kjems J
    Nat Commun; 2016 May; 7():11538. PubMed ID: 27173734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the proline-rich disordered domain of DROSHA in intronic microRNA processing.
    Son S; Kim B; Yang J; Kim VN
    Genes Dev; 2023 May; 37(9-10):383-397. PubMed ID: 37236670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss.
    Talmor-Neiman M; Stav R; Frank W; Voss B; Arazi T
    Plant J; 2006 Jul; 47(1):25-37. PubMed ID: 16824179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional control of gene expression by microRNAs.
    Khraiwesh B; Arif MA; Seumel GI; Ossowski S; Weigel D; Reski R; Frank W
    Cell; 2010 Jan; 140(1):111-22. PubMed ID: 20085706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new short oligonucleotide-based strategy for the precursor-specific regulation of microRNA processing by dicer.
    Kurzynska-Kokorniak A; Koralewska N; Tyczewska A; Twardowski T; Figlerowicz M
    PLoS One; 2013; 8(10):e77703. PubMed ID: 24204924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biogenesis and characterization of mammalian microRNAs of mirtron origin.
    Sibley CR; Seow Y; Saayman S; Dijkstra KK; El Andaloussi S; Weinberg MS; Wood MJ
    Nucleic Acids Res; 2012 Jan; 40(1):438-48. PubMed ID: 21914725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenesis of mammalian microRNAs by a non-canonical processing pathway.
    Havens MA; Reich AA; Duelli DM; Hastings ML
    Nucleic Acids Res; 2012 May; 40(10):4626-40. PubMed ID: 22270084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nuclear RNase III Drosha initiates microRNA processing.
    Lee Y; Ahn C; Han J; Choi H; Kim J; Yim J; Lee J; Provost P; Rådmark O; Kim S; Kim VN
    Nature; 2003 Sep; 425(6956):415-9. PubMed ID: 14508493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene Silencing In Vitro and In Vivo Using Intronic MicroRNAs.
    Lin SL; Ying SY
    Methods Mol Biol; 2018; 1733():107-126. PubMed ID: 29435927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current perspectives in intronic micro RNAs (miRNAs).
    Ying SY; Lin SL
    J Biomed Sci; 2006 Jan; 13(1):5-15. PubMed ID: 16228283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transgene-like animal models using intronic microRNAs.
    Lin SL; Chang SJ; Ying SY
    Methods Mol Biol; 2006; 342():321-34. PubMed ID: 16957386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels.
    Bennasser Y; Chable-Bessia C; Triboulet R; Gibbings D; Gwizdek C; Dargemont C; Kremer EJ; Voinnet O; Benkirane M
    Nat Struct Mol Biol; 2011 Mar; 18(3):323-7. PubMed ID: 21297638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs.
    Valli AA; Santos BA; Hnatova S; Bassett AR; Molnar A; Chung BY; Baulcombe DC
    Genome Res; 2016 Apr; 26(4):519-29. PubMed ID: 26968199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intronic microRNA-directed regulation of mitochondrial reactive oxygen species enhances plant stress tolerance in Arabidopsis.
    Xu WB; Zhao L; Liu P; Guo QH; Wu CA; Yang GD; Huang JG; Zhang SX; Guo XQ; Zhang SZ; Zheng CC; Yan K
    New Phytol; 2023 Oct; 240(2):710-726. PubMed ID: 37547968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development.
    Cho SH; Addo-Quaye C; Coruh C; Arif MA; Ma Z; Frank W; Axtell MJ
    PLoS Genet; 2008 Dec; 4(12):e1000314. PubMed ID: 19096705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.