These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34743603)

  • 1. Modern perspectives on near-equilibrium analysis of Turing systems.
    Krause AL; Gaffney EA; Maini PK; Klika V
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200268. PubMed ID: 34743603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction to 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
    Krause AL; Gaffney EA; Maini PK; Klika V
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200280. PubMed ID: 34743606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights from chemical systems into Turing-type morphogenesis.
    Konow C; Dolnik M; Epstein IR
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200269. PubMed ID: 34743602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Turing: far-from-equilibrium patterns and mechano-chemical feedback.
    Veerman F; Mercker M; Marciniak-Czochra A
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200278. PubMed ID: 34743599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of Turing pattern formation in zebrafish skin.
    Kondo S; Watanabe M; Miyazawa S
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200274. PubMed ID: 34743596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turing pattern design principles and their robustness.
    Vittadello ST; Leyshon T; Schnoerr D; Stumpf MPH
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200272. PubMed ID: 34743598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
    Ball P
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1666):. PubMed ID: 25750229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis.
    Painter KJ; Hunt GS; Wells KL; Johansson JA; Headon DJ
    Interface Focus; 2012 Aug; 2(4):433-50. PubMed ID: 23919127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turing's theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition.
    Meinhardt H
    Interface Focus; 2012 Aug; 2(4):407-16. PubMed ID: 23919125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of approximate symmetries in biological development.
    Gandhi P; Ciocanel MV; Niklas K; Dawes AT
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200273. PubMed ID: 34743597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells.
    Gomez D; Iyaniwura S; Paquin-Lefebvre F; Ward MJ
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200276. PubMed ID: 34743601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Unreasonable Effectiveness of Reaction Diffusion in Vertebrate Skin Color Patterning.
    Milinkovitch MC; Jahanbakhsh E; Zakany S
    Annu Rev Cell Dev Biol; 2023 Oct; 39():145-174. PubMed ID: 37843926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing Turing's theory of morphogenesis in chemical cells.
    Tompkins N; Li N; Girabawe C; Heymann M; Ermentrout GB; Epstein IR; Fraden S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4397-402. PubMed ID: 24616508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry.
    Diez A; Krause AL; Maini PK; Gaffney EA; Seirin-Lee S
    Bull Math Biol; 2024 Jan; 86(2):13. PubMed ID: 38170298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis.
    Fraga Delfino Kunz C; Gerisch A; Glover J; Headon D; Painter KJ; Matthäus F
    Bull Math Biol; 2023 Dec; 86(1):4. PubMed ID: 38038776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays.
    Seirin Lee S; Gaffney EA
    Bull Math Biol; 2010 Nov; 72(8):2161-79. PubMed ID: 20309644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal control of networked reaction-diffusion systems.
    Gao S; Chang L; Romić I; Wang Z; Jusup M; Holme P
    J R Soc Interface; 2022 Mar; 19(188):20210739. PubMed ID: 35259961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ.
    Krause AL; Klika V; Woolley TE; Gaffney EA
    J R Soc Interface; 2020 Jan; 17(162):20190621. PubMed ID: 31937231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid discrete-continuum approach to model Turing pattern formation.
    Macfarlane FR; Chaplain MAJ; Lorenzi T
    Math Biosci Eng; 2020 Oct; 17(6):7442-7479. PubMed ID: 33378905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.