These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 34743714)
1. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714 [TBL] [Abstract][Full Text] [Related]
2. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds. Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons. Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977 [TBL] [Abstract][Full Text] [Related]
5. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series. Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513 [TBL] [Abstract][Full Text] [Related]
6. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
7. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
8. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
9. Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Franks PW; Bryan GM; Martin RM; Reyes R; Lakmazaheri AC; Collins SH Wearable Technol; 2021; 2():e16. PubMed ID: 38486633 [TBL] [Abstract][Full Text] [Related]
10. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Mooney LM; Herr HM J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449 [TBL] [Abstract][Full Text] [Related]
12. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
13. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726 [TBL] [Abstract][Full Text] [Related]
14. Human-in-the-loop optimization of exoskeleton assistance during walking. Zhang J; Fiers P; Witte KA; Jackson RW; Poggensee KL; Atkeson CG; Collins SH Science; 2017 Jun; 356(6344):1280-1284. PubMed ID: 28642437 [TBL] [Abstract][Full Text] [Related]
15. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
16. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. Etenzi E; Borzuola R; Grabowski AM J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344 [TBL] [Abstract][Full Text] [Related]
17. Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults. Lakmazaheri A; Song S; Vuong BB; Biskner B; Kado DM; Collins SH J Neuroeng Rehabil; 2024 Jan; 21(1):1. PubMed ID: 38167151 [TBL] [Abstract][Full Text] [Related]
18. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton. Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579 [TBL] [Abstract][Full Text] [Related]
19. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. Jackson RW; Dembia CL; Delp SL; Collins SH J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663 [TBL] [Abstract][Full Text] [Related]
20. Design of an Ankle Exoskeleton That Recycles Energy to Assist Propulsion During Human Walking. Wang C; Dai L; Shen D; Wu J; Wang X; Tian M; Shi Y; Su C IEEE Trans Biomed Eng; 2022 Mar; 69(3):1212-1224. PubMed ID: 34665715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]