These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34743714)

  • 21. Human-in-the-Loop Optimization of Knee Exoskeleton Assistance for Minimizing User's Metabolic and Muscular Effort.
    Monteiro S; Figueiredo J; Fonseca P; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking.
    Song S; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():786-795. PubMed ID: 33877982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance.
    Malcolm P; Galle S; Van den Berghe P; De Clercq D
    J Neuroeng Rehabil; 2018 Aug; 15(1):74. PubMed ID: 30092800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester.
    Shepertycky M; Liu YF; Li Q
    PLoS One; 2023; 18(8):e0289811. PubMed ID: 37561773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.
    Mooney LM; Rouse EJ; Herr HM
    J Neuroeng Rehabil; 2014 May; 11():80. PubMed ID: 24885527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
    Ding Y; Panizzolo FA; Siviy C; Malcolm P; Galiana I; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 Oct; 13(1):87. PubMed ID: 27716439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance.
    Witte KA; Fiers P; Sheets-Singer AL; Collins SH
    Sci Robot; 2020 Mar; 5(40):. PubMed ID: 33022600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL; Silder A; Uchida TK; Hicks JL; Delp SL
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How adaptation, training, and customization contribute to benefits from exoskeleton assistance.
    Poggensee KL; Collins SH
    Sci Robot; 2021 Sep; 6(58):eabf1078. PubMed ID: 34586837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    BayĆ³n C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton.
    Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M
    Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the Change in Metabolic Cost of Walking before and after Familiarization with a Passive Load-Bearing Exoskeleton: A Case Series.
    Diamond-Ouellette G; Telonio A; Karakolis T; Leblond J; Bouyer LJ; Best KL
    IISE Trans Occup Ergon Hum Factors; 2022; 10(3):161-172. PubMed ID: 36103636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.
    Panizzolo FA; Galiana I; Asbeck AT; Siviy C; Schmidt K; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 May; 13(1):43. PubMed ID: 27169361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study.
    Hedrick EA; Malcolm P; Wilken JM; Takahashi KZ
    J Neuroeng Rehabil; 2019 Nov; 16(1):148. PubMed ID: 31752942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.