BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34744023)

  • 21. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse.
    Petrishia A; Sasikala M
    J Membr Biol; 2015 Dec; 248(6):1015-20. PubMed ID: 26054382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro.
    Rembiałkowska N; Szlasa W; Radzevičiūtė-Valčiukė E; Kulbacka J; Novickij V
    Int J Pharm; 2023 Dec; 648():123611. PubMed ID: 37977287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.
    Grys M; Madeja Z; Korohoda W
    Cell Mol Biol Lett; 2017; 22():1. PubMed ID: 28536632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanopore occlusion: A biophysical mechanism for bipolar cancellation in cell membranes.
    Gowrishankar TR; Stern JV; Smith KC; Weaver JC
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1194-1199. PubMed ID: 30017189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancellation effect is present in high-frequency reversible and irreversible electroporation.
    Polajžer T; Dermol-Černe J; Reberšek M; O'Connor R; Miklavčič D
    Bioelectrochemistry; 2020 Apr; 132():107442. PubMed ID: 31923714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroporation of DC-3F cells is a dual process.
    Wegner LH; Frey W; Silve A
    Biophys J; 2015 Apr; 108(7):1660-1671. PubMed ID: 25863058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective distant electrostimulation by synchronized bipolar nanosecond pulses.
    Gianulis EC; Casciola M; Zhou C; Yang E; Xiao S; Pakhomov AG
    Sci Rep; 2019 Sep; 9(1):13116. PubMed ID: 31511591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations.
    Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A
    J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response characteristics and optimization of electroporation: simulation based on finite element method.
    Zhou C; Yan Z; Liu K
    Electromagn Biol Med; 2021 Jul; 40(3):321-337. PubMed ID: 34278913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanosecond bipolar pulse generators for bioelectrics.
    Xiao S; Zhou C; Yang E; Rajulapati SR
    Bioelectrochemistry; 2018 Oct; 123():77-87. PubMed ID: 29729643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro.
    Scuderi M; Rebersek M; Miklavcic D; Dermol-Cerne J
    Radiol Oncol; 2019 Jun; 53(2):194-205. PubMed ID: 31194692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model.
    Scuderi M; Dermol-Černe J; Batista Napotnik T; Chaigne S; Bernus O; Benoist D; Sigg DC; Rems L; Miklavčič D
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport.
    Sweeney DC; Douglas TA; Davalos RV
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818792490. PubMed ID: 30231776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2-ns Electrostimulation of Ca
    Zaklit J; Craviso GL; Leblanc N; Vernier PT; Sözer EB
    Biophys J; 2021 Feb; 120(3):556-567. PubMed ID: 33359835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field-driven water dipoles: nanoscale architecture of electroporation.
    Tokman M; Lee JH; Levine ZA; Ho MC; Colvin ME; Vernier PT
    PLoS One; 2013; 8(4):e61111. PubMed ID: 23593404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model.
    Carr L; Golzio M; Orlacchio R; Alberola G; Kolosnjaj-Tabi J; Leveque P; Arnaud-Cormos D; Rols MP
    Bioelectrochemistry; 2021 Oct; 141():107839. PubMed ID: 34020398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and Numerical Study of Electroporation Induced by Long Monopolar and Short Bipolar Pulses on Realistic 3D Irregularly Shaped Cells.
    Chiapperino MA; Mescia L; Bia P; Staresinic B; Cemazar M; Novickij V; Tabasnikov A; Smith S; Dermol-Cerne J; Miklavcic D
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2781-2788. PubMed ID: 32011999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations of lipid membrane electroporation.
    Delemotte L; Tarek M
    J Membr Biol; 2012 Sep; 245(9):531-43. PubMed ID: 22644388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.