These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34744060)
1. In vivo comparison of the degradation and osteointegration properties of micro-arc oxidation-coated Mg-Sr and Mg-Ca alloy scaffolds. Sun H; Wang Y; Sun C; Yu H; Xi Z; Liu N; Zhang N Biomed Mater Eng; 2022; 33(3):209-219. PubMed ID: 34744060 [TBL] [Abstract][Full Text] [Related]
2. [ Zhang N; Liu N; Sun C; Zhu J; Wang D; Dai Y; Wu Y; Wang Y; Li J; Zhao D; Yan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):298-305. PubMed ID: 29806278 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the degradation rates and effectiveness of different coated Mg-Zn-Ca alloy scaffolds for in vivo repair of critical-size bone defects. Zhang N; Zhao D; Liu N; Wu Y; Yang J; Wang Y; Xie H; Ji Y; Zhou C; Zhuang J; Wang Y; Yan J J Mater Sci Mater Med; 2018 Aug; 29(9):138. PubMed ID: 30120628 [TBL] [Abstract][Full Text] [Related]
4. In vivo Study on the Corrosion Behavior of Magnesium Alloy Surface Treated with Micro-arc Oxidation and Hydrothermal Deposition. Bai CY; Li JW; Ta WB; Li B; Han Y Orthop Surg; 2017 Aug; 9(3):296-303. PubMed ID: 28960817 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
6. Lithium-Incorporated Nanoporous Coating Formed by Micro Arc Oxidation (MAO) on Magnesium Alloy with Improved Corrosion Resistance, Angiogenesis and Osseointegration. Liu W; Li T; Yang C; Wang D; He G; Cheng M; Wang Q; Zhang X J Biomed Nanotechnol; 2019 Jun; 15(6):1172-1184. PubMed ID: 31072426 [TBL] [Abstract][Full Text] [Related]
7. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Lin X; Tan L; Wang Q; Zhang G; Zhang B; Yang K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3881-8. PubMed ID: 23910291 [TBL] [Abstract][Full Text] [Related]
8. Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation. Zhu B; Wang L; Wu Y; Yue W; Liang J; Cao B J Biomater Appl; 2022 Apr; 36(9):1664-1675. PubMed ID: 35156449 [TBL] [Abstract][Full Text] [Related]
9. The in vitro and in vivo performance of a strontium-containing coating on the low-modulus Ti35Nb2Ta3Zr alloy formed by micro-arc oxidation. Liu W; Cheng M; Wahafu T; Zhao Y; Qin H; Wang J; Zhang X; Wang L J Mater Sci Mater Med; 2015 Jul; 26(7):203. PubMed ID: 26152510 [TBL] [Abstract][Full Text] [Related]
10. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy. Chen J; Zhang Y; Ibrahim M; Etim IP; Tan L; Yang K Colloids Surf B Biointerfaces; 2019 Jul; 179():77-86. PubMed ID: 30952018 [TBL] [Abstract][Full Text] [Related]
11. "Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys". Ibrahim H; Luo A; Dean D; Elahinia M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109700. PubMed ID: 31349526 [TBL] [Abstract][Full Text] [Related]
12. Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair. Liu Y; Cheng X; Wang X; Sun Q; Wang C; Di P; Lin Y Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112491. PubMed ID: 34857277 [TBL] [Abstract][Full Text] [Related]
13. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Lin X; Tan L; Zhang Q; Yang K; Hu Z; Qiu J; Cai Y Acta Biomater; 2013 Nov; 9(10):8631-42. PubMed ID: 23261923 [TBL] [Abstract][Full Text] [Related]
14. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Han J; Wan P; Ge Y; Fan X; Tan L; Li J; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():799-811. PubMed ID: 26478374 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of Y-doped microarc oxidation coating on AZ31 magnesium alloys. Wu Y; Zhu B; Zhang X; Li D; Zhang K; Liang J; Cao B J Biomater Appl; 2022 Nov; 37(5):930-941. PubMed ID: 35971286 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Degradation Behavior of Magnesium Alloy for Bone Implants with Improving Biological Activity, Mechanical Properties, and Corrosion Resistance. Jian SY; Lin CF; Tsai TL; Wang PH; Chen CH; Lin SY; Tseng CC Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675115 [TBL] [Abstract][Full Text] [Related]
17. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. Gu XN; Li N; Zhou WR; Zheng YF; Zhao X; Cai QZ; Ruan L Acta Biomater; 2011 Apr; 7(4):1880-9. PubMed ID: 21145440 [TBL] [Abstract][Full Text] [Related]
18. In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Wu Y; Wang YM; Zhao DW; Zhang N; Li H; Li J; Wang Y; Zhao Y; Yan J; Zhou Y Colloids Surf B Biointerfaces; 2019 Sep; 181():349-359. PubMed ID: 31158697 [TBL] [Abstract][Full Text] [Related]
19. The Potential of Calcium/Phosphate Containing MAO Implanted in Bone Tissue Regeneration and Biological Characteristics. Jian SY; Aktug SL; Huang HT; Ho CJ; Lin SY; Chen CH; Wang MW; Tseng CC Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946764 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration of hollow tubular magnesium‑strontium scaffolds in critical-size segmental defects: Effect of surface coatings. Wang W; Nune KC; Tan L; Zhang N; Dong J; Yan J; Misra RDK; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():297-307. PubMed ID: 30948064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]