These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Optofluidic waveguides: I. Concepts and implementations. Schmidt H; Hawkins AR Microfluid Nanofluidics; 2008 Jan; 4(1-2):3-16. PubMed ID: 21442048 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO Parks JW; Wall TA; Cai H; Hawkins AR; Schmidt H IEEE J Sel Top Quantum Electron; 2016; 22(6):. PubMed ID: 27547024 [TBL] [Abstract][Full Text] [Related]
5. Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation. Ozcelik D; Stott MA; Parks JW; Black JA; Wall TA; Hawkins AR; Schmidt H IEEE J Sel Top Quantum Electron; 2016; 22(4):. PubMed ID: 27524876 [TBL] [Abstract][Full Text] [Related]
6. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing. Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333 [TBL] [Abstract][Full Text] [Related]
7. Hybrid optofluidic integration. Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694 [TBL] [Abstract][Full Text] [Related]
8. Dual-core optofluidic chip for independent particle detection and tunable spectral filtering. Ozcelik D; Phillips BS; Parks JW; Measor P; Gulbransen D; Hawkins AR; Schmidt H Lab Chip; 2012 Oct; 12(19):3728-33. PubMed ID: 22864667 [TBL] [Abstract][Full Text] [Related]
9. Optofluidic devices with integrated solid-state nanopores. Liu S; Hawkins AR; Schmidt H Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940 [TBL] [Abstract][Full Text] [Related]
10. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels. Testa G; Persichetti G; Bernini R Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845 [TBL] [Abstract][Full Text] [Related]
12. Multi-channel velocity multiplexing of single virus detection on an optofluidic chip. Black JA; Ganjalizadeh V; Parks JW; Schmidt H Opt Lett; 2018 Sep; 43(18):4425-4428. PubMed ID: 30211881 [TBL] [Abstract][Full Text] [Related]
14. Chemical-assisted femtosecond laser writing of lab-in-fibers. Haque M; Lee KK; Ho S; Fernandes LA; Herman PR Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138 [TBL] [Abstract][Full Text] [Related]
15. Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides. Meena GG; Wright JG; Hawkins AR; Schmidt H IEEE J Sel Top Quantum Electron; 2021; 27(5):. PubMed ID: 33994767 [TBL] [Abstract][Full Text] [Related]
16. Planar optofluidic chip for single particle detection, manipulation, and analysis. Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616 [TBL] [Abstract][Full Text] [Related]
17. Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device. Watts BR; Zhang Z; Xu CQ; Cao X; Lin M Biomed Opt Express; 2012 Nov; 3(11):2784-93. PubMed ID: 23162718 [TBL] [Abstract][Full Text] [Related]