These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34744603)

  • 1. Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training.
    Takai A; Lisi G; Noda T; Teramae T; Imamizu H; Morimoto J
    Front Neurosci; 2021; 15():704402. PubMed ID: 34744603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction with a reactive partner improves learning in contrast to passive guidance.
    Ivanova E; Eden J; Carboni G; Krüger J; Burdet E
    Sci Rep; 2022 Sep; 12(1):15821. PubMed ID: 36138031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiated Effects of Robot Hand Training With and Without Neural Guidance on Neuroplasticity Patterns in Chronic Stroke.
    Wang X; Wong WW; Sun R; Chu WC; Tong KY
    Front Neurol; 2018; 9():810. PubMed ID: 30349505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.
    Kümmel J; Kramer A; Gruber M
    Hum Mov Sci; 2014 Dec; 38():23-33. PubMed ID: 25238621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependant Bayesian knowledge tracing-Robots that model user skills over time.
    Salomons N; Scassellati B
    Front Robot AI; 2023; 10():1249241. PubMed ID: 38469397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Music meets robotics: a prospective randomized study on motivation during robot aided therapy.
    Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Robot-Aided Upper Limb Rehabilitation Training System Based on Multimodal Feedback.
    Pan L; Zhao L; Song A; Yin Z; She S
    Front Robot AI; 2019; 6():102. PubMed ID: 33501117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment.
    Oquendo YA; Coad MM; Wren SM; Lendvay TS; Nisky I; Jarc AM; Okamura AM; Chua Z
    IEEE Trans Haptics; 2024 Jan; PP():. PubMed ID: 38194379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor improvement estimation and task adaptation for personalized robot-aided therapy: a feasibility study.
    Giang C; Pirondini E; Kinany N; Pierella C; Panarese A; Coscia M; Miehlbradt J; Magnin C; Nicolo P; Guggisberg A; Micera S
    Biomed Eng Online; 2020 May; 19(1):33. PubMed ID: 32410617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.
    Bouchard AE; Corriveau H; Milot MH
    Front Syst Neurosci; 2015; 9():52. PubMed ID: 25873868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.