BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34744637)

  • 1. Contributions of Luminance and Motion to Visual Escape and Habituation in Larval Zebrafish.
    Mancienne T; Marquez-Legorreta E; Wilde M; Piber M; Favre-Bulle I; Vanwalleghem G; Scott EK
    Front Neural Circuits; 2021; 15():748535. PubMed ID: 34744637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminance Changes Drive Directional Startle through a Thalamic Pathway.
    Heap LAL; Vanwalleghem G; Thompson AW; Favre-Bulle IA; Scott EK
    Neuron; 2018 Jul; 99(2):293-301.e4. PubMed ID: 29983325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural circuits underlying habituation of visually evoked escape behaviors in larval zebrafish.
    Fotowat H; Engert F
    Elife; 2023 Mar; 12():. PubMed ID: 36916795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-wide visual habituation networks in wild type and fmr1 zebrafish.
    Marquez-Legorreta E; Constantin L; Piber M; Favre-Bulle IA; Taylor MA; Blevins AS; Giacomotto J; Bassett DS; Vanwalleghem GC; Scott EK
    Nat Commun; 2022 Feb; 13(1):895. PubMed ID: 35173170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli.
    Riley E; Kopotiyenko K; Zhdanova I
    Front Neural Circuits; 2015; 9():41. PubMed ID: 26379509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish.
    Temizer I; Donovan JC; Baier H; Semmelhack JL
    Curr Biol; 2015 Jul; 25(14):1823-34. PubMed ID: 26119746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zebrafish visual system transmits dimming information via multiple segregated pathways.
    Robles E; Fields NP; Baier H
    J Comp Neurol; 2021 Feb; 529(3):539-552. PubMed ID: 32484919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and pharmacological analyses of visual habituation learning in larval zebrafish.
    Lamiré LA; Haesemeyer M; Engert F; Granato M; Randlett O
    Elife; 2023 Dec; 12():. PubMed ID: 38108818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual adaptation and novelty responses in the superior colliculus.
    Boehnke SE; Berg DJ; Marino RA; Baldi PF; Itti L; Munoz DP
    Eur J Neurosci; 2011 Sep; 34(5):766-79. PubMed ID: 21864319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predator versus prey: locust looming-detector neuron and behavioural responses to stimuli representing attacking bird predators.
    Santer RD; Rind FC; Simmons PJ
    PLoS One; 2012; 7(11):e50146. PubMed ID: 23209660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish.
    Pérez-Schuster V; Kulkarni A; Nouvian M; Romano SA; Lygdas K; Jouary A; Dipoppa M; Pietri T; Haudrechy M; Candat V; Boulanger-Weill J; Hakim V; Sumbre G
    Cell Rep; 2016 Oct; 17(4):1098-1112. PubMed ID: 27760314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum.
    Gahtan E; Tanger P; Baier H
    J Neurosci; 2005 Oct; 25(40):9294-303. PubMed ID: 16207889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Zebrafish Visual System: From Circuits to Behavior.
    Bollmann JH
    Annu Rev Vis Sci; 2019 Sep; 5():269-293. PubMed ID: 31525146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic tectal superficial interneurons detect motion in larval zebrafish.
    Yin C; Li X; Du J
    Protein Cell; 2019 Apr; 10(4):238-248. PubMed ID: 30421356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish.
    Randlett O; Haesemeyer M; Forkin G; Shoenhard H; Schier AF; Engert F; Granato M
    Curr Biol; 2019 Apr; 29(8):1337-1345.e4. PubMed ID: 30955936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae).
    Oliva D; Medan V; Tomsic D
    J Exp Biol; 2007 Mar; 210(Pt 5):865-80. PubMed ID: 17297146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and optimization of an effective method for evaluating habituation learning behavior in larval zebrafish.
    Xu H; Tang X; Chen J; Shi Y; Liu J; Han C; Zhu X; Zhang T; Zhou J; Miao W
    J Neurosci Methods; 2023 Feb; 386():109793. PubMed ID: 36640926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.