These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34744865)

  • 21. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Body Temperature Monitoring for Regular COVID-19 Prevention Based on Human Daily Activity Recognition.
    Zhang L; Zhu Y; Jiang M; Wu Y; Deng K; Ni Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Prone position favors motor development of infants].
    Visscher F; van der Graaf T; Spaans M; van Lingen RA; Fetter WP
    Ned Tijdschr Geneeskd; 1998 Oct; 142(40):2201-5. PubMed ID: 9864482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opportunities for learning and social interaction in infant sitting: Effects of sitting support, sitting skill, and gross motor delay.
    Kretch KS; Marcinowski EC; Hsu LY; Koziol NA; Harbourne RT; Lobo MA; Dusing SC
    Dev Sci; 2023 May; 26(3):e13318. PubMed ID: 36047385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quality of diet, body position, and time after feeding influence behavioral states in low birth weight infants.
    Sahni R; Saluja D; Schulze KF; Kashyap S; Ohira-Kist K; Fifer WP; Myers MM
    Pediatr Res; 2002 Sep; 52(3):399-404. PubMed ID: 12193675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of position on sleep, heart rate variability, and QT interval in preterm infants at 1 and 3 months' corrected age.
    Ariagno RL; Mirmiran M; Adams MM; Saporito AG; Dubin AM; Baldwin RB
    Pediatrics; 2003 Mar; 111(3):622-5. PubMed ID: 12612246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wearable inertial sensors for human movement analysis: a five-year update.
    Picerno P; Iosa M; D'Souza C; Benedetti MG; Paolucci S; Morone G
    Expert Rev Med Devices; 2021 Dec; 18(sup1):79-94. PubMed ID: 34601995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Inertial Sensors to Determine Head Motion-A Review.
    Ionut-Cristian S; Dan-Marius D
    J Imaging; 2021 Dec; 7(12):. PubMed ID: 34940732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NICU nurses' knowledge and discharge teaching related to infant sleep position and risk of SIDS.
    Aris C; Stevens TP; Lemura C; Lipke B; McMullen S; Côté-Arsenault D; Consenstein L
    Adv Neonatal Care; 2006 Oct; 6(5):281-94. PubMed ID: 17045948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Daily Quantity of Infant Leg Movement: Wearable Sensor Algorithm and Relationship to Walking Onset.
    Smith BA; Trujillo-Priego IA; Lane CJ; Finley JM; Horak FB
    Sensors (Basel); 2015 Aug; 15(8):19006-20. PubMed ID: 26247951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Description of the motor development of 3-12 month old infants with Down syndrome: the influence of the postural body position.
    Tudella E; Pereira K; Basso RP; Savelsbergh GJ
    Res Dev Disabil; 2011; 32(5):1514-20. PubMed ID: 21367575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach.
    Lee J; Joo H; Lee J; Chee Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A home-video method to assess infant gross motor development: parent perspectives on feasibility.
    Boonzaaijer M; van Wesel F; Nuysink J; Volman MJM; Jongmans MJ
    BMC Pediatr; 2019 Oct; 19(1):392. PubMed ID: 31664955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New reference values must be established for the Alberta Infant Motor Scales for accurate identification of infants at risk for motor developmental delay in Flanders.
    De Kegel A; Peersman W; Onderbeke K; Baetens T; Dhooge I; Van Waelvelde H
    Child Care Health Dev; 2013 Mar; 39(2):260-7. PubMed ID: 22676145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].
    Berényi M; Katona F; Sanchez C; Mandujano M
    Ideggyogy Sz; 2011 Jul; 64(7-8):239-47. PubMed ID: 21863691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in infant and parent behaviors during routine bed sharing compared with cot sleeping in the home setting.
    Baddock SA; Galland BC; Bolton DP; Williams SM; Taylor BJ
    Pediatrics; 2006 May; 117(5):1599-607. PubMed ID: 16651313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wearable Sensors for Measuring Movement in Short Sessions of Mindfulness Sitting Meditation: A Pilot Study.
    Rodriguez VH; Medrano CT; Plaza I
    J Healthc Eng; 2018; 2018():7275049. PubMed ID: 29854363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.