BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34745537)

  • 1. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α-Amidoaldehydes as Substrates in Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of α-Amidoketones.
    Pal R; O'Brien SC; Willis MC
    Chemistry; 2020 Sep; 26(51):11710-11714. PubMed ID: 32449532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation.
    Coxon TJ; Fernández M; Barwick-Silk J; McKay AI; Britton LE; Weller AS; Willis MC
    J Am Chem Soc; 2017 Jul; 139(29):10142-10149. PubMed ID: 28715214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Synthesis of Highly Substituted Pyrroles and Dihydropyrroles Using Linear Selective Hydroacylation Reactions.
    Majhail MK; Ylioja PM; Willis MC
    Chemistry; 2016 Jun; 22(23):7879-84. PubMed ID: 27106284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes.
    Rhlee JH; Maiti S; Lee JW; Lee HS; Bakhtiyorzoda IA; Lee S; Park J; Kang SJ; Kim YS; Seo JK; Myung K; Choe W; Hong SY
    Commun Chem; 2022 Feb; 5(1):13. PubMed ID: 36697817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chelation-controlled intermolecular alkene and alkyne hydroacylation: the utility of beta-thioacetal aldehydes.
    Willis MC; Randell-Sly HE; Woodward RL; Currie GS
    Org Lett; 2005 May; 7(11):2249-51. PubMed ID: 15901181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O-substituted alkyl aldehydes for rhodium-catalyzed intermolecular alkyne hydroacylation: the utility of methylthiomethyl ethers.
    Parsons SR; Hooper JF; Willis MC
    Org Lett; 2011 Mar; 13(5):998-1000. PubMed ID: 21309521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Amino Aldehydes as Readily Available Chiral Aldehydes for Rh-Catalyzed Alkyne Hydroacylation.
    Hooper JF; Seo S; Truscott FR; Neuhaus JD; Willis MC
    J Am Chem Soc; 2016 Feb; 138(5):1630-4. PubMed ID: 26771104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversely Substituted Quinolines via Rhodium-Catalyzed Alkyne Hydroacylation.
    Neuhaus JD; Morrow SM; Brunavs M; Willis MC
    Org Lett; 2016 Apr; 18(7):1562-5. PubMed ID: 26974467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting rhodium-catalysed ynamide hydroacylation as a platform for divergent heterocycle synthesis.
    Straker RN; Majhail MK; Willis MC
    Chem Sci; 2017 Dec; 8(12):7963-7968. PubMed ID: 29568442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.
    Osborne JD; Willis MC
    Chem Commun (Camb); 2008 Oct; (40):5025-7. PubMed ID: 18931774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners.
    Biju AT; Kuhl N; Glorius F
    Acc Chem Res; 2011 Nov; 44(11):1182-95. PubMed ID: 21751790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium-catalyzed coupling reaction of primary alcohols with 2-alkynes leading to hydroacylation products.
    Hatanaka S; Obora Y; Ishii Y
    Chemistry; 2010 Feb; 16(6):1883-8. PubMed ID: 20029924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular hydroacylation: high activity rhodium catalysts containing small-bite-angle diphosphine ligands.
    Chaplin AB; Hooper JF; Weller AS; Willis MC
    J Am Chem Soc; 2012 Mar; 134(10):4885-97. PubMed ID: 22324763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoredox-Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes.
    Murugesan V; Muralidharan A; Anantharaj GV; Chinnusamy T; Rasappan R
    Org Lett; 2022 Nov; 24(45):8435-8440. PubMed ID: 36342240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem Alkyne Hydroacylation and Oxo-Michael Addition: Diastereoselective Synthesis of 2,3-Disubstituted Chroman-4-ones and Fluorinated Derivatives.
    Du XW; Stanley LM
    Org Lett; 2015 Jul; 17(13):3276-9. PubMed ID: 26098453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.