These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34745741)

  • 1. Estimation of scleral mechanical properties from air-puff optical coherence tomography.
    Bronte-Ciriza D; Birkenfeld JS; de la Hoz A; Curatolo A; Germann JA; Villegas L; Varea A; Martínez-Enríquez E; Marcos S
    Biomed Opt Express; 2021 Oct; 12(10):6341-6359. PubMed ID: 34745741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study.
    Nguyen BA; Roberts CJ; Reilly MA
    Front Bioeng Biotechnol; 2018; 6():210. PubMed ID: 30687701
    [No Abstract]   [Full Text] [Related]  

  • 3. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm.
    Rahmati SM; Razaghi R; Karimi A
    J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributing factors to corneal deformation in air puff measurements.
    Kling S; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5078-85. PubMed ID: 23821200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical properties of the rat sclera obtained with inverse finite element modeling.
    Schwaner SA; Hannon BG; Feola AJ; Ethier CR
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2195-2212. PubMed ID: 32361821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation response of paired donor corneas to an air puff: intact whole globe versus mounted corneoscleral rim.
    Metzler KM; Mahmoud AM; Liu J; Roberts CJ
    J Cataract Refract Surg; 2014 Jun; 40(6):888-96. PubMed ID: 24857437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the Elastic Modulus of Cornea, Sclera and Limbus: The Importance of the Corneal-Limbus-Scleral Biomechanical Unit.
    Silver FH; Deshmukh T; Benedetto D; Gonzalez-Mercedes M; Mesica A
    Front Biosci (Schol Ed); 2022 Nov; 14(4):30. PubMed ID: 36575840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive measurement of scleral stiffness and tangent modulus in porcine eyes.
    Leung LK; Ko MW; Ye C; Lam DC; Leung CK
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3721-6. PubMed ID: 24833738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities.
    Curatolo A; Birkenfeld JS; Martinez-Enriquez E; Germann JA; Muralidharan G; Palací J; Pascual D; Eliasy A; Abass A; Solarski J; Karnowski K; Wojtkowski M; Elsheikh A; Marcos S
    Biomed Opt Express; 2020 Nov; 11(11):6337-6355. PubMed ID: 33282494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.
    Girard MJ; Downs JC; Bottlang M; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051012. PubMed ID: 19388782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye.
    Pierscionek BK; Asejczyk-Widlicka M; Schachar RA
    Br J Ophthalmol; 2007 Jun; 91(6):801-3. PubMed ID: 17151057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry.
    Maczynska E; Rzeszewska-Zamiara J; Jimenez Villar A; Wojtkowski M; Kaluzny BJ; Grulkowski I
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1979-1986. PubMed ID: 31050724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas.
    Dorronsoro C; Pascual D; Pérez-Merino P; Kling S; Marcos S
    Biomed Opt Express; 2012 Mar; 3(3):473-87. PubMed ID: 22435096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Prediction of Air-Puff Induced Corneal Deformation Using LASIK, SMILE, and PRK Finite Element Simulations.
    Francis M; Khamar P; Shetty R; Sainani K; Nuijts RMMA; Haex B; Sinha Roy A
    Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5320-5328. PubMed ID: 30398623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Link between Anterior Scleral Thickness, Corneal Biomechanical Response, and Ocular Parameters.
    Burguera-Giménez N; Díez-Ajenjo MA; Burguera N; Luque-Cobija MJ; Peris-Martínez C
    Ophthalmic Res; 2022; 65(6):685-697. PubMed ID: 35835082
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Vinas-Pena M; Feng X; Li GY; Yun SH
    Biomed Opt Express; 2022 Oct; 13(10):5434-5446. PubMed ID: 36425630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.