These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34745881)

  • 1. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone
    Feng T; Zhu Y; Morris R; Kozloff KM; Wang X
    Photoacoustics; 2021 Sep; 23():100273. PubMed ID: 34745881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study.
    Feng T; Zhu Y; Morris R; Kozloff KM; Wang X
    BME Front; 2020; 2020():1081540. PubMed ID: 37849970
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of a semi-anthropomorphic photoacoustic calcaneus phantom based on nano computed tomography and stereolithography 3D printing.
    Xu Z; Locke CS; Morris R; Jamison D; Kozloff KM; Wang X
    J Orthop Res; 2024 Mar; 42(3):647-660. PubMed ID: 37804209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of bone microstructure using photoacoustic spectrum analysis.
    Feng T; Perosky JE; Kozloff KM; Xu G; Cheng Q; Du S; Yuan J; Deng CX; Wang X
    Opt Express; 2015 Sep; 23(19):25217-24. PubMed ID: 26406719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of bone disease with ultrasound--comparison with bone densitometry.
    Litniewski J; Nowicki A; Sawicki A
    Ultrasonics; 2000 Mar; 38(1-8):693-7. PubMed ID: 10829754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment.
    Xie W; Feng T; Zhang M; Li J; Ta D; Cheng L; Cheng Q
    Photoacoustics; 2021 Jun; 22():100259. PubMed ID: 33777692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential diagnostic role of the MRI-derived internal magnetic field gradient in calcaneus cancellous bone for evaluating postmenopausal osteoporosis at 3T.
    Rebuzzi M; Vinicola V; Taggi F; Sabatini U; Wehrli FW; Capuani S
    Bone; 2013 Nov; 57(1):155-63. PubMed ID: 23899635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment.
    Feng T; Ge Y; Xie Y; Xie W; Liu C; Li L; Ta D; Jiang Q; Cheng Q
    Photoacoustics; 2021 Dec; 24():100296. PubMed ID: 34522607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coregistered photoacoustic and ultrasonic signatures of early bone density variations.
    Lashkari B; Mandelis A
    J Biomed Opt; 2014 Mar; 19(3):36015. PubMed ID: 24647973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents.
    Lashkari B; Yang L; Mandelis A
    Quant Imaging Med Surg; 2015 Feb; 5(1):46-56. PubMed ID: 25694953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Photoacoustic/Ultrasonic Endoscopic Imaging Based on a Line-Focused Transducer.
    Pang W; Wang Y; Guo L; Wang B; Lai P; Xiao J
    Front Bioeng Biotechnol; 2021; 9():807633. PubMed ID: 35071214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium.
    Johnstonbaugh K; Agrawal S; Durairaj DA; Fadden C; Dangi A; Karri SPK; Kothapalli SR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2649-2659. PubMed ID: 31944951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bone microarchitecture in chronic kidney disease: a comparison of 2D bone texture analysis and high-resolution peripheral quantitative computed tomography at the radius and tibia.
    Bacchetta J; Boutroy S; Vilayphiou N; Fouque-Aubert A; Delmas PD; Lespessailles E; Fouque D; Chapurlat R
    Calcif Tissue Int; 2010 Nov; 87(5):385-91. PubMed ID: 20711834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustic signal-to-noise ratio comparison for pulse and continuous waveforms of very low optical fluence.
    Kang D
    J Biomed Opt; 2022 Jul; 27(7):076006. PubMed ID: 36451701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed tomography image analysis of the calcaneus in male osteoporosis.
    Cortet B; Dubois P; Boutry N; Palos G; Cotten A; Marchandise X
    Osteoporos Int; 2002 Jan; 13(1):33-41. PubMed ID: 11878453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A portable real-time ultrasonic bone densitometer.
    Kaufman JJ; Luo G; Siffert RS
    Ultrasound Med Biol; 2007 Sep; 33(9):1445-52. PubMed ID: 17587486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic power azimuth spectrum for microvascular evaluation.
    Zhang M; Chen Y; Xie W; Wu S; Liao J; Cheng Q
    Photoacoustics; 2021 Jun; 22():100260. PubMed ID: 33777693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of optical transmissivity on signal characteristics of photoacoustic guided waves in long cortical bone.
    Chen H; Xu K; Liu X; Li Y; Liu Z; Ta D
    Ultrasonics; 2022 Dec; 126():106816. PubMed ID: 35914378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence.
    Agrawal S; Suresh T; Garikipati A; Dangi A; Kothapalli SR
    Photoacoustics; 2021 Dec; 24():100304. PubMed ID: 34584840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.