These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Oscillations in microtubule polymerization: the rate of GTP regeneration on tubulin controls the period. Melki R; Carlier MF; Pantaloni D EMBO J; 1988 Sep; 7(9):2653-9. PubMed ID: 3181136 [TBL] [Abstract][Full Text] [Related]
5. Tubulin oligomers and microtubule oscillations. Antagonistic role of microtubule stabilizers and destabilizers. Lange G; Mandelkow EM; Jagla A; Mandelkow E Eur J Biochem; 1988 Dec; 178(1):61-9. PubMed ID: 3203694 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation. Carlier MF; Didry D; Pantaloni D Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805 [TBL] [Abstract][Full Text] [Related]
7. Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering. Diaz JF; Andreu JM; Diakun G; Towns-Andrews E; Bordas J Biophys J; 1996 May; 70(5):2408-20. PubMed ID: 9172767 [TBL] [Abstract][Full Text] [Related]
8. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Martin SR; Schilstra MJ; Bayley PM Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889 [TBL] [Abstract][Full Text] [Related]
9. Microtubule oscillations. Role of nucleation and microtubule number concentration. Obermann H; Mandelkow EM; Lange G; Mandelkow E J Biol Chem; 1990 Mar; 265(8):4382-8. PubMed ID: 2307670 [TBL] [Abstract][Full Text] [Related]
11. Dynamic properties of microtubules at steady state of polymerisation. Martin SR; Schilstra MJ; Bayley PM Biochem Biophys Res Commun; 1987 Dec; 149(2):461-7. PubMed ID: 3426585 [TBL] [Abstract][Full Text] [Related]
12. Mechanism for oscillatory assembly of microtubules. Caplow M; Shanks J J Biol Chem; 1990 Jan; 265(3):1414-8. PubMed ID: 2295638 [TBL] [Abstract][Full Text] [Related]
13. Use of Monte Carlo calculations in the study of microtubule subunit kinetics. Chen Y; Hill TL Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7520-3. PubMed ID: 6584870 [TBL] [Abstract][Full Text] [Related]
14. Phosphate release during microtubule assembly: what stabilizes growing microtubules? Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063 [TBL] [Abstract][Full Text] [Related]
16. Mathematical modeling of microtubule dynamics: insights into physiology and disease. Buxton GA; Siedlak SL; Perry G; Smith MA Prog Neurobiol; 2010 Dec; 92(4):478-83. PubMed ID: 20713128 [TBL] [Abstract][Full Text] [Related]
17. A reassessment of the factors affecting microtubule assembly and disassembly in vitro. Caudron N; Valiron O; Usson Y; Valiron P; Job D J Mol Biol; 2000 Mar; 297(1):211-20. PubMed ID: 10704317 [TBL] [Abstract][Full Text] [Related]
18. Chromium (III)-nucleotide complexes as probes of the guanosine 5'-triphosphate-induced microtubule assembly. Macneal RK; Purich DL Arch Biochem Biophys; 1978 Nov; 191(1):233-43. PubMed ID: 736563 [No Abstract] [Full Text] [Related]
19. Kinetic and steady state analysis of microtubule assembly. Weisenberg RC Ann N Y Acad Sci; 1986; 466():543-51. PubMed ID: 3460430 [No Abstract] [Full Text] [Related]
20. Effects of the tubulin-colchicine complex on microtubule dynamic instability. Vandecandelaere A; Martin SR; Schilstra MJ; Bayley PM Biochemistry; 1994 Mar; 33(10):2792-801. PubMed ID: 8130191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]