These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34746613)

  • 1. Structural Evolution of Polyglycolide and Poly(glycolide
    Miao Y; Cui H; Dong Z; Ouyang Y; Li Y; Huang Q; Wang Z
    ACS Omega; 2021 Nov; 6(43):29254-29266. PubMed ID: 34746613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Evolution of Polyglycolide and Poly(glycolide-
    Dong Z; Miao Y; Cui H; Huang Q; Li Y; Wang Z
    Biomacromolecules; 2021 Aug; 22(8):3342-3356. PubMed ID: 34212713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane.
    Zong X; Ran S; Kim KS; Fang D; Hsiao BS; Chu B
    Biomacromolecules; 2003; 4(2):416-23. PubMed ID: 12625740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair.
    Zhu Y; Wang Z; Li L; Gao D; Xu Q; Zhu Q; Zhang P
    J Mater Chem B; 2017 Nov; 5(44):8695-8706. PubMed ID: 32264263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair.
    Zhu Y; Wang Z; Zhou H; Li L; Zhu Q; Zhang P
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():326-334. PubMed ID: 28866171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal growth and solid-state structure of poly(lactide) Stereocopolymers.
    Abe H; Harigaya M; Kikkawa Y; Tsuge T; Doi Y
    Biomacromolecules; 2005; 6(1):457-67. PubMed ID: 15638553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response.
    Shen Y; Tu T; Yi B; Wang X; Tang H; Liu W; Zhang Y
    Acta Biomater; 2019 Oct; 97():200-215. PubMed ID: 31400522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lactide monomer on the hydrolytic degradation of poly(lactide-co-glycolide) 85L/15G.
    Paakinaho K; Heino H; Väisänen J; Törmälä P; Kellomäki M
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1283-90. PubMed ID: 21783137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Wee SH; Boey YC
    Biomaterials; 2005 Jun; 26(16):2827-33. PubMed ID: 15603778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε-caprolactone) and poly(glycolide-ε-caprolactone) blended fibers.
    Chung AS; Hwang HS; Das D; Zuk P; McAllister DR; Wu BM
    J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):274-84. PubMed ID: 22069303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of the Mechanical, Structural, and Thermal Properties of Poly(l-lactide-
    Turek A; Rech J; Borecka A; Wilińska J; Kobielarz M; Janeczek H; Kasperczyk J
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of composition, solvent, and salt particles on the physicochemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds.
    Kuo YC; Leou SN
    Biotechnol Prog; 2006; 22(6):1664-70. PubMed ID: 17137316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters.
    Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun Poly(lactide-
    Feng Y; Lu W; Ren X; Liu W; Guo M; Ullah I; Zhang W
    Polymers (Basel); 2016 Jan; 8(2):. PubMed ID: 30979132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural Changes during Degradation of Biobased Poly(4-hydroxybutyrate) Sutures.
    Keridou I; Franco L; Del Valle LJ; Martínez JC; Funk L; Turon P; Puiggalí J
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects.
    Altay E; Jang YJ; Kua XQ; Hillmyer MA
    Biomacromolecules; 2021 Jun; 22(6):2532-2543. PubMed ID: 33970613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide).
    Geddes L; Themistou E; Burrows JF; Buchanan FJ; Carson L
    Acta Biomater; 2021 Oct; 134():261-275. PubMed ID: 34329786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic degradation and drug release properties of ganciclovir-loaded biodegradable microspheres.
    Chen X; Ooi CP
    Acta Biomater; 2008 Jul; 4(4):1046-56. PubMed ID: 18342589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.